Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Tuesday 6th February 2018 from 11.00am to 11.15am (GMT).

During this time our website performance may be temporarily affected. If you have any questions please use the feedback button available under our menu button. We apologise for any inconvenience this might cause and thank you for your patience.



Form factor for distorted semi-flexible polymer chains

Author affiliations

Abstract

The statistical presence of kinks which form defects in semi-flexible polymer chains leads to a polydispersity in the effective persistence length. The form factor of a distorted semi-flexible polymer results as an average over this persistence polydispersity. It turns out that the scattering behavior of an ensemble of distorted semi-flexible polymer chains is quite well approximated by a form factor of an undistorted chain with a Rg-equivalent persistence length. An apparent length polydispersity is observed for short distorted chains. The Rg-equivalent persistence length is significantly smaller than the innate persistence length multiplied by the fraction of regular monomers. The results are compared to related work on DNA from the literature.

Graphical abstract: Form factor for distorted semi-flexible polymer chains

Back to tab navigation

Publication details

The article was received on 25 Oct 2017, accepted on 06 Dec 2017 and first published on 12 Dec 2017


Article type: Paper
DOI: 10.1039/C7SM02098H
Citation: Soft Matter, 2018, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    Form factor for distorted semi-flexible polymer chains

    R. Sigel, Soft Matter, 2018, Advance Article , DOI: 10.1039/C7SM02098H

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements