Jump to main content
Jump to site search

Issue 12, 2018
Previous Article Next Article

Engaging sulfinate salts via Ni/photoredox dual catalysis enables facile Csp2–SO2R coupling

Author affiliations

Abstract

This report details the development and implementation of a strategy to construct aryl- and heteroaryl sulfones via Ni/photoredox dual catalysis. Using aryl sulfinate salts, the C–S bond can be forged at room temperature under base-free conditions. An array of aryl- and heteroaryl halides are compatible with this approach. The broad tolerance and mild nature of the described reaction could potentially be employed to prepare sulfones with biological relevance (e.g., in bioconjugation, drug substance synthesis, etc.) as demonstrated in the synthesis of drug-like compounds or their precursors. When paired with existing Ni/photoredox chemistry for Csp3–Csp2 cross-coupling, an array of diverse sulfone scaffolds can be readily assembled from bifunctional electrophiles. A mechanistic manifold consistent with experimental and computational data is presented.

Graphical abstract: Engaging sulfinate salts via Ni/photoredox dual catalysis enables facile Csp2–SO2R coupling

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Dec 2017, accepted on 21 Feb 2018 and first published on 22 Feb 2018


Article type: Edge Article
DOI: 10.1039/C7SC05402E
Citation: Chem. Sci., 2018,9, 3186-3191
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Engaging sulfinate salts via Ni/photoredox dual catalysis enables facile Csp2–SO2R coupling

    M. J. Cabrera-Afonso, Z. Lu, C. B. Kelly, S. B. Lang, R. Dykstra, O. Gutierrez and G. A. Molander, Chem. Sci., 2018, 9, 3186
    DOI: 10.1039/C7SC05402E

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements