Issue 25, 2018, Issue in Progress

Novel catenated N6 energetic compounds based on substituted 1,2,4-triazoles: synthesis, structures and properties

Abstract

1-Amino-3,5-dinitro-1,2,4-triazole (ADNT) was prepared using an efficient N-amination process. Three novel catenated N6 energetic derivatives of ADNT, which contain 1,1′-azobis(3,5-dinitro-1,2,4-triazole) (ABDNT), 1,1′-azobis(3-chloro-5-nitro-1,2,4-triazole) (ABCNT) and 1,1′-azobis(3,5-diazido-1,2,4-triazole) (ABDAT), were synthesized from N-amino oxidative-coupling reactions of ADNT. All compounds were fully characterized by 1H and 13C nuclear magnetic resonance spectroscopies, infrared spectroscopy, elemental analysis, mass spectrum, as well as differential scanning calorimetry (DSC). The crystal structure of compound ABCNT was confirmed by single-crystal X-ray diffraction showing an extensive conjugated structure. The densities of energetic derivatives ranged from 1.71 to 1.93 g cm−3, and all compounds have positive heats of formation in the range of 774.8 to 2150.8 kJ mol−1. Based on the measured densities and calculated heats of formation, theoretical performance calculations, including detonation pressures (29.6–42.4 GPa) and detonation velocities (8.22–9.49 km s−1) were carried out using the Gaussian 09 program and Kamlet–Jacobs equations, and they compared favorably with those of TNT and RDX. These properties make them potentially competitive as new high energy-density compounds.

Graphical abstract: Novel catenated N6 energetic compounds based on substituted 1,2,4-triazoles: synthesis, structures and properties

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2018
Accepted
05 Apr 2018
First published
16 Apr 2018
This article is Open Access
Creative Commons BY license

RSC Adv., 2018,8, 13755-13763

Novel catenated N6 energetic compounds based on substituted 1,2,4-triazoles: synthesis, structures and properties

Y. Li, B. Wang, P. Chang, J. Hu, T. Chen, Y. Wang and B. Wang, RSC Adv., 2018, 8, 13755 DOI: 10.1039/C8RA02491J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements