Jump to main content
Jump to site search


Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV

Author affiliations

Abstract

Due to the quantum confinement effects, the bandgap of two-dimensional (2D) perovskites increases when the thickness of the inorganic slabs decreases. This could result in insufficient light absorption that limits the overall performance of perovskite solar cells. Here we report a series of small bandgap 2D perovskites using mixed butylammonium (BA) and formamidinium (FA) cations, i.e. (BA)2(FA)n−1PbnI3n+1 (n = 1–5). In particular, 2D perovskite (BA)2(FA)2Pb3I10 shows a small bandgap of 1.51 eV, which is comparable to state-of-the-art three-dimensional perovskites. A strongly preferential out-of-plane crystallographic alignment of the inorganic perovskite component in the (BA)2(FA)2Pb3I10 film is achieved by the addition of thiourea in the precursor. This significantly improves charge transport and thus leads to highly efficient inverted solar cells with a planar structure of ITO/PEDOT:PSS/(BA)2(FA)2Pb3I10/PC61BM/BCP/Ag. With the best power conversion efficiency of 6.88%, we demonstrated the highest PCE reported for FA based low-n (n < 4) 2D perovskite solar cells. By virtue of the stable 2D perovskites, the unencapsulated device retains 80% efficiency after storing in air with a humidity of 25 ± 5% for 25 days, indicating excellent stability against moisture and oxygen.

Graphical abstract: Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 Oct 2017, accepted on 04 Nov 2017 and first published on 08 Nov 2017


Article type: Research Article
DOI: 10.1039/C7QM00472A
Citation: Mater. Chem. Front., 2018, Advance Article
  •   Request permissions

    Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV

    J. Yan, W. Fu, X. Zhang, J. Chen, W. Yang, W. Qiu, G. Wu, F. Liu, P. Heremans and H. Chen, Mater. Chem. Front., 2018, Advance Article , DOI: 10.1039/C7QM00472A

Search articles by author

Spotlight

Advertisements