Jump to main content
Jump to site search

Issue 5, 2018
Previous Article Next Article

Broad color tuning and Eu3+-related photoemission enhancement via controllable energy transfer in the La2MgGeO6:Eu3+,Bi3+ phosphor

Author affiliations

Abstract

Recently, how to employ a feasible strategy to design novel phosphors with color-tuning properties and enhanced photoemission has become a hot research subject. Herein, we report a series of UV-converted Eu3+, Bi3+-doped La2MgGeO6 phosphors, which enable broad color tuning and Eu3+-related fluorescence enhancement simultaneously. Structural analysis shows that all samples crystallize in a trigonal structure with the space group R3 (no. 146), and Eu3+ and Bi3+ ions tend to substitute La3+ ions rather than Mg2+ and Ge4+ ions. Photoluminescence (PL) results show that excitation in the UV spectral region (e.g., 248 nm, 292 nm, and 393 nm) enables the Bi3+-doped La2MgGeO6 phosphors to exhibit a single blue emission band (i.e., 412 nm) that corresponds to the characteristic 3P11S0 transition of Bi3+ ions and Eu3+-doped La2MgGeO6 phosphors to show sharp emission lines that correspond to the characteristic 5D07FJ (J = 1, 2, 3, and 4) transitions of Eu3+ ions. In addition, we studied the energy transfer mechanism from Bi3+ to Eu3+ ions, and on the basis of the PL results and theoretical evaluations, we revealed that this energy transfer process occurred via a dipole–quadrupole (d–q) interaction and could enhance Eu3+-related fluorescence intensity and thus led to color tuning from blue to red upon excitation at 298 nm. To illustrate our experimental PL observations more clearly, a mechanistic profile based on the energy transfer and simplified spectral energy levels of Bi3+ and Eu3+ ions is also established. This study not only adds a new member into the family of UV-converted tunable phosphors, but also provides new insights into the discovery of more single-phase phosphors with simultaneous PL enhancement and emission color tuning for UV-converted wLEDs using the energy transfer interaction.

Graphical abstract: Broad color tuning and Eu3+-related photoemission enhancement via controllable energy transfer in the La2MgGeO6:Eu3+,Bi3+ phosphor

Back to tab navigation

Publication details

The article was received on 09 Feb 2018, accepted on 22 Mar 2018 and first published on 22 Mar 2018


Article type: Research Article
DOI: 10.1039/C8QI00126J
Citation: Inorg. Chem. Front., 2018,5, 1076-1084
  •   Request permissions

    Broad color tuning and Eu3+-related photoemission enhancement via controllable energy transfer in the La2MgGeO6:Eu3+,Bi3+ phosphor

    W. Xie, Y. Mo, C. Zou, F. Kang and G. Sun, Inorg. Chem. Front., 2018, 5, 1076
    DOI: 10.1039/C8QI00126J

Search articles by author

Spotlight

Advertisements