Issue 36, 2018

Truxene-based porous polymers: from synthesis to catalytic activity

Abstract

We report a multigram synthesis of new, robust, insoluble porous organic polymers based on the semiconducting platform of hexamethyltruxene (TxPPs and TxBnPPs) which present high Brunauer–Emmett–Teller (BET) specific surface areas (1710–1186 m2 g−1). These new polymers exhibit high thermal and chemical stability and can be easily postfunctionalized under different reaction conditions, allowing the incorporation of acid, base or acid–base groups (TxPPs-SO3H, TxPPs-NH2 and TxPPs-SO3H–NH2) in the polymeric networks, yet displaying a significant porosity. The potential applications of the new truxene-based polymers as heterogeneous catalysts are also presented. The intrinsic photocatalytic activity of the truxene network which takes advantage of the semiconducting character of the constituent units is investigated in the aerobic oxidative self-coupling of benzylamine under visible light. On the other hand, the use of these polymers as heterogeneous supports is investigated by studying the catalytic behavior of the monofunctional acid or bifunctional acid–base polymers in esterification and transesterification and one-pot cascade reactions, respectively.

Graphical abstract: Truxene-based porous polymers: from synthesis to catalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2018
Accepted
12 Aug 2018
First published
13 Aug 2018

Polym. Chem., 2018,9, 4585-4595

Truxene-based porous polymers: from synthesis to catalytic activity

J. Guadalupe, A. M. Ray, E. M. Maya, B. Gómez-Lor and M. Iglesias, Polym. Chem., 2018, 9, 4585 DOI: 10.1039/C8PY01082J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements