Issue 37, 2018

Grafting-from lipase: utilization of a common amino acid residue as a new grafting site

Abstract

Protein–polymer hybrids are used in a variety of fields including catalysis, detection, and therapeutics. The grafting-from method for the synthesis of these biohybrids has gained popularity due to the ease of synthesis and purification. In this method, an initiator or chain transfer agent (CTA) is ligated onto an amino acid residue, typically lysine or cysteine, and polymers are subsequently grown in situ. In this manuscript, we report the preparation of protein polymer hybrids by grafting-from a previously overlooked acidic amino acid residue (glutamic and aspartic acid) and compare our results to protein polymer hybrids, grafted from the traditional lysine residue. Herein, we conjugated an atom transfer radical polymerization (ATRP) initiator to acidic amino acid residues and lysine residues and grew polymers from Thermomyces lanuginosa lipase (TL). N-[3-(N,N-Dimethylamino)propyl] acrylamide was grafted from the TL initiator, and the enzymatic activity of protein polymer hybrids was compared. We found that the acidic residues are easily modified with multiple ATRP initiators and polymers are readily grown. Additionally, the hybrids grafted from acidic residues demonstrated a 50% increase in enzyme activity compared to those grafted from lysine residues. Moreover, the activity was higher than that of native lipase TL in both cases. The polymers that were grafted-from the acid residues tended to provide the hybrids with a higher activity at elevated temperatures. These results point to a new amino acid ligation strategy for preparing protein polymer hybrids via a grafting-from method.

Graphical abstract: Grafting-from lipase: utilization of a common amino acid residue as a new grafting site

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2018
Accepted
17 Aug 2018
First published
17 Aug 2018

Polym. Chem., 2018,9, 4651-4659

Author version available

Grafting-from lipase: utilization of a common amino acid residue as a new grafting site

M. Kovaliov, C. Cheng, B. Cheng and S. Averick, Polym. Chem., 2018, 9, 4651 DOI: 10.1039/C8PY01026A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements