Issue 21, 2018

Synthesis, thin-film self-assembly, and pyrolysis of ruthenium-containing polyferrocenylsilane block copolymers

Abstract

Polyferrocenylsilane (PFS)-containing block copolymers have previously been shown to self-assemble into metal-rich nanodomains in thin films or the bulk phase. This patterning of the metalloblock can enable the fabrication of arrays of Fe nanoparticles for applications in catalytic carbon nanotube growth. Herein, we report the preparation of block copolymers with a ruthenium-containing polyferrocenylsilane (RuPFMEtS) segment from a polystyrene-block-polyferrocenylmethyl(trimethylsilylethynyl)silane (PS-b-PFMEt(TMS)S) precursor. The latter was prepared via the photocontrolled ring-opening polymerisation of methyl(trimethylsilylethynyl)sila[1]ferrocenophane and a cyclopentadienyl-terminated polystyrene homopolymer. Deprotection of the Si(CH3)3 groups from the ethynyl substituents on the PFS block was carried out by using NaOMe. Incorporation of Ru3(CO)9H clusters into the block copolymer was achieved by reaction with Ru3(CO)12 to obtain PS-b-RuPFMEtS. This afforded two block copolymers, highly metallised ruthenium-based segments, PS265-b-RuPFMEtS10 and PS196-b-RuPFMEtS31, containing ca. 10 and 20% Ru by mass, respectively. Phase-separation of the resulting block copolymers was investigated in the bulk and thin films and was found to yield spherical or cylindrical domains of RuPFMEtS in a PS matrix, respectively. Pyrolysis of PS265-b-RuPFMEtS10 and PS196-b-RuPFMEtS31 block copolymers at 500 or 800 °C for 2 h led to the formation of either amorphous (ca. 2 nm in diameter at 500 °C) or polycrystalline (ca. 14 nm in diameter at 800 °C) Fe/Ru nanoparticles in a carbonaceous matrix. These NP composites are promising candidates for use as heterogeneous hydrogenation catalysts. The pyrolysed materials were characterised by high resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction, scanning electron microscopy and powder X-ray diffraction.

Graphical abstract: Synthesis, thin-film self-assembly, and pyrolysis of ruthenium-containing polyferrocenylsilane block copolymers

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2018
Accepted
11 Apr 2018
First published
17 Apr 2018

Polym. Chem., 2018,9, 2951-2963

Synthesis, thin-film self-assembly, and pyrolysis of ruthenium-containing polyferrocenylsilane block copolymers

H. N. Al-Kharusi, L. Wu, G. Whittell, R. Harniman and I. Manners, Polym. Chem., 2018, 9, 2951 DOI: 10.1039/C8PY00168E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements