Jump to main content
Jump to site search

Synthesis, Thin-Film Self-Assembly, and Pyrolysis of Ruthenium-containing Polyferrocenylsilane Block Copolymers


Polyferrocenylsilane (PFS)-containing block copolymers have previously been shown to self-assemble into metal-rich nanodomains in thin films or the bulk phase. This patterning of the metalloblock can enable the fabrication of arrays of Fe nanoparticles for applications in catalytic carbon nanotube growth. Herein, we report the preparation of block copolymers with a ruthenium-containing polyferrocenylsilane (RuPFMEtS) segment from a polystyrene-block-polyferrocenylmethyl(trimethylsilylethynyl)silane (PS-b-PFMEt(TMS)S) precursor. The latter was prepared via the photocontrolled ring-opening polymerisation of methyl(trimethylsilylethynyl)sila[1]ferrocenophane and a cyclopentadienyl-terminated polystyrene homopolymer. Deprotection of the Si(CH3)3 groups from the ethynyl substituents on the PFS block was carried out by using NaOMe. Incorporation of Ru3(CO)9H clusters into the block copolymer was achieved by reaction with Ru3(CO)12 to obtain PS-b-RuPFMEtS. This afforded two block copolymers high-metallised ruthenium-based segments; PS265-b-RuPFMEtS10 and PS196-b-RuPFMEtS31, containing 9 and 21 % Ru by mass, respectively. Phase-separation of the resulting block copolymers was investigated in the bulk and thin films and was found to yield spherical or cylindrical domains of RuPFMEtS in a PS matrix, respectively. Pyrolysis of PS265-b-RuPFMEtS10 and PS196-b-RuPFMEtS31 block copolymers at 500 or 800 oC for 2 h led to formation of either amorphous (ca. 2 nm in diameter at 500 oC) or polycrystalline (ca. 14 nm in diameter at 800 oC) Fe/Ru nanoparticles in a carbonaceous matrix. These NP composites are promising candidates for use as heterogeneous hydrogenatijon catalysts. The pyrolysed materials were characterised by high resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction, scanning electron microscopy and powder X-ray diffraction.

Back to tab navigation

Supplementary files

Publication details

The article was received on 29 Jan 2018, accepted on 11 Apr 2018 and first published on 17 Apr 2018

Article type: Paper
DOI: 10.1039/C8PY00168E
Citation: Polym. Chem., 2018, Accepted Manuscript
  •   Request permissions

    Synthesis, Thin-Film Self-Assembly, and Pyrolysis of Ruthenium-containing Polyferrocenylsilane Block Copolymers

    H. Al-Kharusi, L. wu, G. whittell, R. L. Harniman and I. Manners, Polym. Chem., 2018, Accepted Manuscript , DOI: 10.1039/C8PY00168E

Search articles by author