Issue 3, 2018

Precise synthesis of thermoresponsive polyvinylphosphonate-biomolecule conjugates via thiol–ene click chemistry

Abstract

A polymerisation type only recently attracting notice is the rare earth metal-mediated group transfer polymerisation (REM-GTP). This living-type polymerisation is able to conquer the limitations faced by classical anionic and radical polymerisations. REM-GTP enables the synthesis of biocompatible, water-soluble and thermoresponsive polymers with narrow polydispersities and controlled molecular weights. Furthermore, this technique renders the introduction of a functional end-group via the initiating molecule. Our group was able to synthesise a new multi-functional pyridine derivative and apply it as a highly active and efficient initiator in the polymerisation of diethylvinylphosphonate (DEVP). This novel end-group opens the door to various post-polymerisation modifications. In the present study, the thiol–ene click reaction, a fast, selective and well-established coupling method, was applied to link poly-DEVP and a biomolecule. The incentive for this investigation was to create a polymer platform, that can easily address a multiplicity of applications through facile alterations of the coupled biomolecule entities. Herein, we present for the first time the functionalisation of polyvinylphosphonates with biologically relevant motifs, namely cholesterol and folic acid.

Graphical abstract: Precise synthesis of thermoresponsive polyvinylphosphonate-biomolecule conjugates via thiol–ene click chemistry

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2017
Accepted
07 Nov 2017
First published
08 Nov 2017

Polym. Chem., 2018,9, 284-290

Precise synthesis of thermoresponsive polyvinylphosphonate-biomolecule conjugates via thiol–ene click chemistry

C. Schwarzenböck, A. Schaffer, P. Pahl, P. J. Nelson, R. Huss and B. Rieger, Polym. Chem., 2018, 9, 284 DOI: 10.1039/C7PY01796K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements