Issue 36, 2018

High-performance double ion-buffering reservoirs of asymmetric supercapacitors based on flower-like Co3O4-G>N-PEGm microspheres and 3D rGO-CNT>N-PEGm aerogels

Abstract

Novel 3D flower-like Co3O4-G>N-PEGm composites have been synthesized by employing a solvothermal method, in which the incorporating graphene nanosheets are modified with methoxypolyethylene glycol (mPEG) via nitrene chemistry to form 2D macromolecular brushes. In Co3O4-G>N-PEGm, the flower-like Co3O4 microspheres can anchor on the G>N-PEGm nanosheets, corresponding to the coordination bonds between the lone pair of electrons on the mPEG polymer chains of the G>N-PEGm macromolecular brushes and cobalt ions. Owing to the novel structure, a high specific capacitance value of 1625.6 F g−1 at a current density of 0.5 A g−1 can be achieved in KOH solution. Meanwhile, 3D rGO-CNT>N-PEGm aerogels (GCA), as the negative electrode of electrical double-layer capacitor materials, exhibit a high reversible specific capacitance of 313.8 F g−1 at a current density of 2 A g−1. Based on the high electrochemical performance of both electrode materials, the double ion-buffering reservoirs of asymmetric supercapacitors configured with the Co3O4-G>N-PEGm as the positive electrode and 3D GCA as the negative electrode can deliver a high energy density of 34.4 W h kg−1 at a power density of 400 kW kg−1.

Graphical abstract: High-performance double ion-buffering reservoirs of asymmetric supercapacitors based on flower-like Co3O4-G>N-PEGm microspheres and 3D rGO-CNT>N-PEGm aerogels

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2018
Accepted
15 Aug 2018
First published
16 Aug 2018

Nanoscale, 2018,10, 17293-17303

High-performance double ion-buffering reservoirs of asymmetric supercapacitors based on flower-like Co3O4-G>N-PEGm microspheres and 3D rGO-CNT>N-PEGm aerogels

C. Lai, Y. Sun, X. Zhang, H. Yang and B. Lin, Nanoscale, 2018, 10, 17293 DOI: 10.1039/C8NR05865B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements