Jump to main content
Jump to site search

Issue 22, 2018
Previous Article Next Article

Graphite felts modified by vertical two-dimensional WO3 nanowall arrays: high-performance electrode materials for cerium-based redox flow batteries

Author affiliations

Abstract

Cerium-based redox flow batteries (RFBs) are very attractive for highly efficient energy storage applications with industrial-scale storage capacity. However, the development of active, stable, and earth-abundant catalysts for cerium redox reactions with sluggish kinetics remains a major challenge. Herein, for the first time, two-dimensional (2D) nanostructured architectures were used to design and fabricate efficient and stable electrocatalysts from earth-abundant components toward the Ce(IV)/Ce(III) redox reaction. A novel WO3/GF hybrid architecture (WGF) built from WO3 nanowall arrays (NWAs) anchored on graphite felt (GF) surfaces was prepared for cerium-based RFBs. This unique hybrid exhibits superior electrocatalytic performance since the vertical nanowall arrays display open and ordered structures that ensure full exposure of the active sites toward electrolytes, which allows direct and full contact of every nanowall with the electrolyte. As an electrode for cerium redox reactions, this WGF electrode exhibits a 42.1% and 32.0% increase in energy efficiency as compared with that of pristine GF and acid-treated GF at a high charge/discharge rate of 30 mA cm−2. Moreover, the long-term cycling performance confirms the superior durability of the as-prepared WGF. This study suggests that the use of 2D nanostructures combined with vertical array microstructures is a promising strategy for efficient electrocatalysts toward cerium redox reactions with scale-up potential.

Graphical abstract: Graphite felts modified by vertical two-dimensional WO3 nanowall arrays: high-performance electrode materials for cerium-based redox flow batteries

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Feb 2018, accepted on 14 May 2018 and first published on 15 May 2018


Article type: Paper
DOI: 10.1039/C8NR01345D
Citation: Nanoscale, 2018,10, 10705-10712
  •   Request permissions

    Graphite felts modified by vertical two-dimensional WO3 nanowall arrays: high-performance electrode materials for cerium-based redox flow batteries

    Z. Na, X. Wang, D. Yin and L. Wang, Nanoscale, 2018, 10, 10705
    DOI: 10.1039/C8NR01345D

Search articles by author

Spotlight

Advertisements