Jump to main content
Jump to site search

Issue 22, 2018
Previous Article Next Article

Nonlinear optical potassium niobate nanocrystals as harmonic markers: the role of precursors and stoichiometry in hydrothermal synthesis

Author affiliations

Abstract

Nanocrystals of alkaline niobates are currently being discussed for various applications because of their diverse and remarkable properties. Although the growth of bulk niobate crystals is well established, little is known about respective nanocrystals and the optical properties of niobates below 100 nm. A systematic view of the hydrothermal synthesis of potassium niobate with respect to the precursor species reveals the sensitive dependence of the resulting crystalline phases and sizes on the educt modifications. With a variation of stoichiometry of the procedure, the product modification and crystallite size can be changed. By means of second harmonic generation, nanocrystalline potassium niobate offers the possibility for use as an optical marker in high resolution nonlinear microscopy. Redispersed particles show a significant second harmonic generation signal throughout the visible spectral range.

Graphical abstract: Nonlinear optical potassium niobate nanocrystals as harmonic markers: the role of precursors and stoichiometry in hydrothermal synthesis

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Jan 2018, accepted on 01 May 2018 and first published on 02 May 2018


Article type: Paper
DOI: 10.1039/C8NR00470F
Citation: Nanoscale, 2018,10, 10713-10720
  •   Request permissions

    Nonlinear optical potassium niobate nanocrystals as harmonic markers: the role of precursors and stoichiometry in hydrothermal synthesis

    Z. Wang, C. Kijatkin, A. Urban, M. Haase, M. Imlau and K. Kömpe, Nanoscale, 2018, 10, 10713
    DOI: 10.1039/C8NR00470F

Search articles by author

Spotlight

Advertisements