Issue 19, 2018

New oxidovanadium(iv) complex with a BIAN ligand: synthesis, structure, redox properties and catalytic activity

Abstract

Reaction of VCl3 with bis[N-(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) in air afforded [VOCl2(dpp-bian)] (1). The complex was characterized by IR and UV-vis spectroscopies and elemental analysis. The crystal structure of 1 was determined by X-ray diffraction (XRD) analysis. The vanadium atom is in a square-pyramidal OCl2N4 coordination environment. The cyclic voltammogram (CV) in dichloromethane reveals an irreversible oxidation process at +1.40 V (vs. Ag/AgCl) assigned to the V(IV)/V(V) couple, and two consecutive quasi-reversible one-electron reduction processes at −0.32 V and −1.05 V (vs. Ag/AgCl), respectively, assigned to the bian/bian−/˙ and bian−/˙/bian2− couples, followed by irreversible reduction at −1.6 V (vs. Ag/AgCl). The EPR spectrum of 1 in toluene shows a single 8-line signal typical for oxidovanadium(IV) complexes with d1 configuration. The magnetic behavior of 1 confirms the presence of one unpaired electron (μeff (330 K) = 1.67 μB), and the isolation of the paramagnetic centers. Application of 1 to oxidation of alkanes documented high catalytic activity under mild conditions. The kinetics and selectivity of alkane oxygenation by the 1/H2O2 and 1/PCA/H2O2 systems (PCA is pyrazine-2-carboxylic acid) were studied. The reaction is more efficient in the presence of PCA.

Graphical abstract: New oxidovanadium(iv) complex with a BIAN ligand: synthesis, structure, redox properties and catalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
06 Jul 2018
Accepted
27 Aug 2018
First published
30 Aug 2018

New J. Chem., 2018,42, 16200-16210

New oxidovanadium(IV) complex with a BIAN ligand: synthesis, structure, redox properties and catalytic activity

I. S. Fomenko, A. L. Gushchin, L. S. Shul’pina, N. S. Ikonnikov, P. A. Abramov, N. F. Romashev, A. S. Poryvaev, A. M. Sheveleva, A. S. Bogomyakov, N. Y. Shmelev, M. V. Fedin, G. B. Shul’pin and M. N. Sokolov, New J. Chem., 2018, 42, 16200 DOI: 10.1039/C8NJ03358G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements