Jump to main content
Jump to site search


Half-sandwich type rhodium(III)–aminohydroxamate complexes: the role of the position of the amino group in metal ion binding

Author affiliations

Abstract

Complex formation equilibria between [(η5-Cp*)RhIII(H2O)3]2+ and aminohydroxamic acids (L-2-amino-N-hydroxyacetamide (α-alahaH), 3-amino-N-hydroxypropanamide (β-alahaH) and 4-amino-N-hydroxybutanamide (GABAha, γ-abhaH)) having the primary amino group in different chelatable positions relative to the hydroxamic function were studied using pH-potentiometric, 1H NMR and ESI-MS methods and the formation constants of the complexes present in aqueous solution are reported. The relative order of the pH-dependent conditional stability of the hydroxamate type (O,O) and (Namino,Nhydroxamato) chelates was found to determine to a great extent the coordination modes both in the mono- and various dinuclear species formed. While with α-alaha, a 5-membered (N,N) chelated mononuclear complex predominates, with β-alaha in a wide pH-range, very stable dinuclear cluster ions exist. With γ-abha, in the most stable complexes, two ligands (in reverse variation) link two half-sandwich cations, coordinating each ligand via the hydroxamate chelate to one metal centre, while via the amino-N to the other one. This arrangement seems to be further stabilized by a hydrogen bond as DFT calculations support the extra stabilization effect of internal H-bonding in [{(η5-Cp*)RhIII}2H−1(γ-abha)2]+. The synthesis, spectral (NMR and IR) and MS characterization of a novel complex with an iridium analogue, [(η5-Cp*)IrIII(α-alaha)Br] (1) is also described. This complex was tested for its in vitro cytotoxicity using human-derived cancer cell lines (A2780, HeLa, DU-145, A549, and MCF-7) and showed insignificant anti-proliferative activity in the micromolar concentration range.

Graphical abstract: Half-sandwich type rhodium(iii)–aminohydroxamate complexes: the role of the position of the amino group in metal ion binding

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Nov 2017, accepted on 12 Mar 2018 and first published on 12 Mar 2018


Article type: Paper
DOI: 10.1039/C7NJ04711H
Citation: New J. Chem., 2018, Advance Article
  •   Request permissions

    Half-sandwich type rhodium(III)–aminohydroxamate complexes: the role of the position of the amino group in metal ion binding

    P. L. Parajdi-Losonczi, P. Buglyó, H. Skakalova, J. Kasparkova, N. Lihi and E. Farkas, New J. Chem., 2018, Advance Article , DOI: 10.1039/C7NJ04711H

Search articles by author

Spotlight

Advertisements