Jump to main content
Jump to site search

Issue 3, 2018
Previous Article Next Article

Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion

Author affiliations

Abstract

Metal organic framework (MOF)-derived nanoporous carbons (NPCs) have been proposed as promising electrode materials for energy storage and conversion devices. However, MOF-derived NPCs typically suffer from poor electrical conductivity due to the lack of connectivity between these particles and a micropore-dominated storage mechanism, which hinder mass and electron transfer, thereby leading to poor electrochemical performance. In recent years, one-dimensional (1D) MOF-derived carbon nanostructures obtained using an electrospinning method have emerged as promising materials for both electrochemical energy storage (EES) and energy conversion applications. In this mini review, the recent progress in the development of MOF-derived 1D porous or hollow carbon nanofibers using the electrospinning method and their application in energy storage (e.g., supercapacitors and rechargeable batteries) and conversion devices (e.g., fuel cells) is presented. The synthetic method, formation mechanism and the structure–activity relationship of such porous or hollow carbon nanofibers are also discussed in detail. Finally, future perspectives on the development of electrospun MOF-derived carbon nanomaterials for energy storage and conversion applications are provided. This review will provide some guidance for future derivations of 1D hollow carbon nanomaterials from MOFs using electrospinning technology.

Graphical abstract: Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion

Back to tab navigation

Publication details

The article was received on 31 Jan 2018, accepted on 03 Apr 2018 and first published on 03 Apr 2018


Article type: Minireview
DOI: 10.1039/C8MH00133B
Citation: Mater. Horiz., 2018,5, 394-407
  •   Request permissions

    Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion

    C. Wang, Y. V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li and Y. Yamauchi, Mater. Horiz., 2018, 5, 394
    DOI: 10.1039/C8MH00133B

Search articles by author

Spotlight

Advertisements