Issue 24, 2018

Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples

Abstract

Extracellular vesicles (EVs) offer many opportunities in early-stage disease diagnosis, treatment monitoring, and precision therapy owing to their high abundance in bodily fluids, accessibility from liquid biopsy, and presence of nucleic acid and protein cargo from their cell of origin. Despite their growing promise, isolation of EVs for analysis remains a labor-intensive and time-consuming challenge given their nanoscale dimensions (30–200 nm) and low buoyant density. Here, we report a simple, size-based EV separation technology that integrates 1024 nanoscale deterministic lateral displacement (nanoDLD) arrays on a single chip capable of parallel processing sample fluids at rates of up to 900 μL h−1. Benchmarking the nanoDLD chip against commonly used EV isolation technologies, including ultracentrifugation (UC), UC plus density gradient, qEV size-exclusion chromatography (Izon Science), and the exoEasy Maxi Kit (QIAGEN), we demonstrate a superior yield of ∼50% for both serum and urine samples, representing the ability to use smaller input volumes to achieve the same number of isolated EVs, and a concentration factor enhancement of up to ∼3× for both sample types, adjustable to ∼60× for urine through judicious design. Further, RNA sequencing was carried out on nanoDLD- and UC-isolated EVs from prostate cancer (PCa) patient serum samples, resulting in a higher gene expression correlation between replicates for nanoDLD-isolated EVs with enriched miRNA, decreased rRNA, and the ability to detect previously reported RNA indicators of aggressive PCa. Taken together, these results suggest nanoDLD as a promising alternative technology for fast, reproducible, and automatable EV-isolation.

Graphical abstract: Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2018
Accepted
01 Nov 2018
First published
15 Nov 2018

Lab Chip, 2018,18, 3913-3925

Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples

J. T. Smith, B. H. Wunsch, N. Dogra, M. E. Ahsen, K. Lee, K. K. Yadav, R. Weil, M. A. Pereira, J. V. Patel, E. A. Duch, J. M. Papalia, M. F. Lofaro, M. Gupta, A. K. Tewari, C. Cordon-Cardo, G. Stolovitzky and S. M. Gifford, Lab Chip, 2018, 18, 3913 DOI: 10.1039/C8LC01017J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements