Issue 5, 2018

Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing

Abstract

Various nanomechanical movements of bacteria provide a signature of bacterial viability. Most notably, bacterial movements have been observed to subside rapidly and dramatically when the bacteria are exposed to effective antibiotics. Thus, monitoring bacterial movements, if performed with high fidelity, could offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and ultrasensitive electrical transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microfluidic channel, which the bacteria populate. The swimming of planktonic bacteria and the random oscillations of surface-immobilized bacteria both cause small but detectable electrical fluctuations. We show that this technique provides enough sensitivity to detect even the slightest movements of a single cell; we also demonstrate an antibiotic susceptibility test in a biological matrix. Given that it lends itself to smooth integration with other microfluidic methods and devices, the technique can be developed into a functional antibiotic susceptibility test, in particular, for urinary tract infections.

Graphical abstract: Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2017
Accepted
29 Jan 2018
First published
29 Jan 2018

Lab Chip, 2018,18, 743-753

Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing

V. Kara, C. Duan, K. Gupta, S. Kurosawa, D. J. Stearns-Kurosawa and K. L. Ekinci, Lab Chip, 2018, 18, 743 DOI: 10.1039/C7LC01019B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements