Jump to main content
Jump to site search

Issue 4, 2018
Previous Article Next Article

Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA

Author affiliations

Abstract

Natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ202Hg value of −0.42 ± 0.09‰ (1SD) and near-zero Δ199Hg. On average, particulate fraction δ202Hg values increased downstream by 0.53‰, while Δ199Hg decreased by −0.10‰, converging with the Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from −0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ202Hg values, respectively, compared to dissolved Hg in stream water. Variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.

Graphical abstract: Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Nov 2017, accepted on 28 Feb 2018 and first published on 01 Mar 2018


Article type: Paper
DOI: 10.1039/C7EM00538E
Citation: Environ. Sci.: Processes Impacts, 2018,20, 686-707
  •   Request permissions

    Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA

    J. D. Demers, J. D. Blum, S. C. Brooks, Patrick M. Donovan, A. L. Riscassi, C. L. Miller, W. Zheng and B. Gu, Environ. Sci.: Processes Impacts, 2018, 20, 686
    DOI: 10.1039/C7EM00538E

Search articles by author

Spotlight

Advertisements