Issue 9, 2018

Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction

Abstract

We demonstrate a rational fabrication of hierarchical treated rape pollen (TRP), a biological material used as a metal-free catalyst for visible-light-driven photocatalytic CO2 reduction. The TRP catalyst exhibits excellent visible-light-driven carbon monoxide (CO) formation of 488.4 μmol h−1 g−1 with 98.3% selectivity, using no co-catalyst or sacrifice reagent, accompanied by a high quantum efficiency of over 6.7% at 420 nm. The CO evolution rate obtained on the TRP catalyst is roughly 29.4 and 25.6 times higher than those of the most commonly reported photocatalysts, such as g-C3N4 (16.6 μmol h−1 g−1) and P25 TiO2 (19.1 μmol h−1 g−1), and is the highest among the reported carbon-based photocatalysts. In situ Fourier transform infrared spectrometry analysis disclosed that formic acid is a major intermediate. The considerable photocatalytic CO2 reduction activity observed on the TRP catalyst can be ascribed to the following factors: (i) the unique hollow porous structure of the TRP favours visible light harvesting and CO2 adsorption capacity; and (ii) the interior cavity of the TRP can decrease the diffusion length of the photogenerated reactive charge carrier from bulk to surface, thus promoting charge carrier separation. We anticipate that such a nature-based sustainable photocatalyst can provide new insights to facilitate the design of metal-free catalysts with outstanding visible-light-driven CO2 reduction performance.

Graphical abstract: Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction

Supplementary files

Article information

Article type
Communication
Submitted
19 Jun 2018
Accepted
27 Jun 2018
First published
27 Jun 2018

Energy Environ. Sci., 2018,11, 2382-2389

Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction

Z. Jiang, H. Sun, T. Wang, B. Wang, W. Wei, H. Li, S. Yuan, T. An, H. Zhao, J. Yu and P. K. Wong, Energy Environ. Sci., 2018, 11, 2382 DOI: 10.1039/C8EE01781F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements