Issue 8, 2018

Solar thermal-driven capacitance enhancement of supercapacitors

Abstract

Solar energy is a renewable and abundant energy source that has myriad potential applications to be tapped. Energy storage devices often present diminishing performance at lower temperatures, and sometimes they even fail during cold weather; therefore, a renewable technology to spur such sluggish performance not only is important for a sustainable future but also may inspire new-concept devices such as ignition sensors. Here, under solar illumination, the capacitance, energy density and power density of supercapacitors are all largely enhanced owing to the photothermal effect. The supercapacitors employ three-dimensional hierarchical graphene as the electrodes, and show an absorption of >92.88% over the entire solar spectrum, a response time of <200 s, and a surface temperature change of ∼39 °C under 1 solar illumination (1 kW m−2). Under 1 solar illumination, the capacitance of the pseudocapacitor increases by ∼1.5 times, and the capacitance of the electric double-layer capacitor increases by ∼3.7 times. The mechanism is quantitatively analyzed and discussed. This work provides new insights into the applications of solar energy and offers new design options for the development of energy storage devices.

Graphical abstract: Solar thermal-driven capacitance enhancement of supercapacitors

Supplementary files

Article information

Article type
Communication
Submitted
27 Apr 2018
Accepted
13 Jun 2018
First published
14 Jun 2018

Energy Environ. Sci., 2018,11, 2016-2024

Solar thermal-driven capacitance enhancement of supercapacitors

F. Yi, H. Ren, K. Dai, X. Wang, Y. Han, K. Wang, K. Li, B. Guan, J. Wang, M. Tang, J. Shan, H. Yang, M. Zheng, Z. You, D. Wei and Z. Liu, Energy Environ. Sci., 2018, 11, 2016 DOI: 10.1039/C8EE01244J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements