Jump to main content
Jump to site search

Issue 26, 2018
Previous Article Next Article

NIR/blue light emission optimization of NaY1−(x+y)YbxF4:Tmy upconversion nanoparticles via Yb3+/Tm3+ dopant balancing

Author affiliations

Abstract

The increased applications of lanthanide-doped upconversion nanoparticles (UCNPs) in areas such as biomedical imaging and therapy have raised the demand for high quality nanocrystals with strong and controllable luminescence intensity. Whilst several different approaches including core/shell arrangement, dye sensitization and plasmonic metallic nanostructures have been employed to improve the upconversion luminescence of UCNPs, they may be impractical for scale-up production and applications. Herein, a mathematical model that was developed using multivariate statistical analysis shows that the key to optimising the NIR and blue light emission of NaY1−(x+y)YbxF4:Tmy UCNPs is dopant balancing, where the composition of both ytterbium (Yb3+) sensitizer and thulium (Tm3+) activator is controlled in a way that the concentration and proximity of the dopants to each other can reduce cross-relaxation between Tm3+ and self-quenching that is due to sub-optimal Yb3+ concentrations, and consequently, favours efficient energy transfer between the Yb3+ sensitizers and Tm3+ activators. The data driven approach gives better understanding of the role of dopant balancing in the upconversion process and presents a general yet effective strategy to enhance the optical properties of UCNPs by manipulating the relative concentrations of the lanthanide dopants. This systematic approach will have important implications and it can be integrated with other emission enhancing strategies to produce high quality UCNPs for diverse applications in photonics, imaging, sensing, drug delivery and solar energy conversion.

Graphical abstract: NIR/blue light emission optimization of NaY1−(x+y)YbxF4:Tmy upconversion nanoparticles via Yb3+/Tm3+ dopant balancing

Back to tab navigation

Supplementary files

Publication details

The article was received on 18 Dec 2017, accepted on 23 Jan 2018 and first published on 23 Jan 2018


Article type: Paper
DOI: 10.1039/C7DT04768A
Citation: Dalton Trans., 2018,47, 8629-8637
  •   Request permissions

    NIR/blue light emission optimization of NaY1−(x+y)YbxF4:Tmy upconversion nanoparticles via Yb3+/Tm3+ dopant balancing

    A. Bagheri, Z. Li, C. Boyer and M. Lim, Dalton Trans., 2018, 47, 8629
    DOI: 10.1039/C7DT04768A

Search articles by author

Spotlight

Advertisements