Issue 6, 2018

Merrifield resin-assisted routes to second-generation catalysts for olefin metathesis

Abstract

Phosphine-scavenging resins can significantly facilitate the synthesis of highly active Ru metathesis catalysts, including the second-generation Grubbs, Hoveyda, and indenylidene catalysts (GII, HII, InII). These catalysts are customarily prepared by ligand exchange of the corresponding first-generation catalysts with the N-heterocyclic carbene (NHC) H2IMes. The PCy3 coproduct is conventionally removed by pentane extraction, but the partial solubility of the desired Ru products can cause product losses of over 20%. Sequestration of the PCy3 coproduct with CuCl is more efficient, but is undesirable given the potential for non-innocent copper residues. Use of the arylsulfonic acid resin Amberlyst-15 delivers near-quantitative catalyst yields, but the high acidity of the resin leads to problems with reproducibility and decomposition. An alternative approach is described, in which a neutral Merrifield resin (crosslinked polystyrene with pendant p-C6H4CH2I groups; MF-I) is used to sequester PCy3 as the covalently-tethered benzylphosphonium salt. Addition of MF-I following complete ligand exchange effects quantitative uptake of free PCy3 (and any residual free NHC) within 45 min at RT: the clean products are isolated by filtration, in ca. 95% yield. These yields compare well with those obtained via the Amberlyst-15 route, without the challenges due to resin acidity. The efficacy of this methodology is demonstrated in the synthesis of isotopically-labelled derivatives of HII, in which the H2IMes ligand bears a 13C-label at the carbene carbon, or perdeuterated mesityl rings.

Graphical abstract: Merrifield resin-assisted routes to second-generation catalysts for olefin metathesis

Supplementary files

Article information

Article type
Paper
Submitted
06 Nov 2017
Accepted
26 Jan 2018
First published
05 Feb 2018

Catal. Sci. Technol., 2018,8, 1535-1544

Merrifield resin-assisted routes to second-generation catalysts for olefin metathesis

D. L. Nascimento, E. C. Davy and D. E. Fogg, Catal. Sci. Technol., 2018, 8, 1535 DOI: 10.1039/C7CY02278F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements