Issue 18, 2018

Assessing the scalability of low conductivity substrates for photo-electrodes via modelling of resistive losses

Abstract

When scaling up photo-electrochemical processes to larger areas than conventionally studied in the laboratory, substrate performance must be taken into consideration and in this work, a methodology to assess this via an uncomplicated 2 dimensional model is outlined. It highlights that for F-doped SnO2 (FTO), which is ubiquitously used for metal oxide photoanodes, substrate performance becomes significant for moderately sized electrodes (5 cm) under no solar concentration for state of the art Fe2O3 thin films. It is demonstrated that when the process is intensified via solar concentration, current losses become quickly limiting. Methodologies to reduce the impact of substrate ohmic losses are discussed and a new strategy is proposed. Due to the nature of the photo-electrode current–potential relationship, operation at a higher potential where the photo-current saturates (before the dark current is observed) will lead to a minimum in current loss due to substrate performance. Crucially, this work outlines an additional challenge in scaling up photo-electrodes based on low conductivity substrates, and establishes that such challenges are not insurmountable.

Graphical abstract: Assessing the scalability of low conductivity substrates for photo-electrodes via modelling of resistive losses

Article information

Article type
Paper
Submitted
28 Feb 2018
Accepted
19 Apr 2018
First published
19 Apr 2018

Phys. Chem. Chem. Phys., 2018,20, 12422-12429

Assessing the scalability of low conductivity substrates for photo-electrodes via modelling of resistive losses

I. Holmes-Gentle, H. Agarwal, F. Alhersh and K. Hellgardt, Phys. Chem. Chem. Phys., 2018, 20, 12422 DOI: 10.1039/C8CP01337C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements