Issue 15, 2018

Room-temperature distance measurements using RIDME and the orthogonal spin labels trityl/nitroxide

Abstract

Electron paramagnetic resonance (EPR) based nanometer distance measurements at ambient temperatures are of particular interest for structural biology applications. The nitroxide spin labels commonly used in EPR reveal relatively short transverse relaxation under these conditions, which limits their use for detecting static dipolar interactions. At the same time, the longitudinal relaxation of nitroxide spin labels is still long enough to allow using them as ‘pumped’ species in the relaxation induced dipolar modulation enhancement (RIDME) experiment where the detection is carried out on the slower relaxing triarylmethyl (TAM) spin labels. In the present study, we report the first demonstration of room-temperature RIDME distance measurements in nucleic acids using TAM as the slow-relaxing detected species and traditional nitroxide as the fast-relaxing partner spin. Two types of immobilizers, glassy trehalose and the modified silica gel Nucleosil, were used for immobilization of the spin-labeled biomolecules. The room-temperature RIDME-based distance distributions are in good agreement with those measured at 80 K by other techniques. Room-temperature RIDME on the spin pairs trityl/nitroxide may become a useful method for the structural characterization of biomacromolecules and biomolecular complexes at near physiological temperatures.

Graphical abstract: Room-temperature distance measurements using RIDME and the orthogonal spin labels trityl/nitroxide

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2018
Accepted
08 Mar 2018
First published
08 Mar 2018

Phys. Chem. Chem. Phys., 2018,20, 10224-10230

Room-temperature distance measurements using RIDME and the orthogonal spin labels trityl/nitroxide

A. A. Kuzhelev, O. A. Krumkacheva, G. Yu. Shevelev, M. Yulikov, M. V. Fedin and E. G. Bagryanskaya, Phys. Chem. Chem. Phys., 2018, 20, 10224 DOI: 10.1039/C8CP01093E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements