Issue 19, 2018

Rippling of graphitic surfaces: a comparison between few-layer graphene and HOPG

Abstract

The surface structure of Few-Layer Graphene (FLG) epitaxially grown on the C-face of SiC has been investigated by TM-AFM in ambient air and upon interaction with dilute aqueous solutions of bio-organic molecules (L-methionine and dimethyl sulfoxide, DMSO). Before interaction with molecular solutions, we observe nicely ordered, three-fold oriented rippled domains, with a 4.7 ± 0.2 nm periodicity (small periodicity, SP) and a peak-to-valley distance in the range 0.1–0.2 nm. Upon mild interaction with the molecular solution, the ripple periodicity “relaxes” to 6.2 ± 0.2 nm (large periodicity, LP), while the peak-to-valley height increases to 0.2–0.3 nm. When additional energy is transferred to the system through sonication in solution, graphene planes are peeled off, as shown by quantitative analysis of Raman spectroscopy and X-ray photoelectron spectroscopy which indicate a neat reduction of thickness. Upon exfoliation rippled domains are no longer observed. In comparative experiments on cleaved HOPG, we could not observe ripples on pristine samples in ambient air, while LP ripples develop upon interaction with the molecular solutions. Recent literature on similar systems is not univocal regarding the interpretation of rippling. The ensemble of our comparative observations on FLG and HOPG can be hardly rationalized solely on the basis of the surface assembly of molecules, either organic molecules coming from the solution or adventitious species. We propose to consider rippling as the manifestation of the free-energy minimization of quasi-2D layers, eventually affected by factors such as interplanar stacking, and interactions with molecules and/or with the AFM tip.

Graphical abstract: Rippling of graphitic surfaces: a comparison between few-layer graphene and HOPG

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2018
Accepted
10 Apr 2018
First published
12 Apr 2018

Phys. Chem. Chem. Phys., 2018,20, 13322-13330

Rippling of graphitic surfaces: a comparison between few-layer graphene and HOPG

N. Haghighian, D. Convertino, V. Miseikis, F. Bisio, A. Morgante, C. Coletti, M. Canepa and O. Cavalleri, Phys. Chem. Chem. Phys., 2018, 20, 13322 DOI: 10.1039/C8CP01039K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements