Issue 15, 2018

Interplay between a crystal's shape and spatiotemporal dynamics in a spin transition material

Abstract

We investigated by means of optical microscopy (OM) the spatiotemporal features of the thermo-induced spin transition of [Fe(2-pytrz)2{Pd(CN)4}]·3H2O (1) (2-pytrz = 4-(2-pyridyl)-1,2,4,4H-triazole) single crystals having two different shapes (triangle and rectangle). While magnetic and calorimetric measurements, performed on a polycrystalline material, showed the respective average heating and cooling transition temperatures of (Tdown1/2 ∼ 152 K, Tup1/2 ∼ 154 K) and (Tdown1/2 ∼ 160.0 K, Tup1/2 ∼ 163.5 K), OM studies performed on a unique single crystal revealed significantly different switching temperatures (Tdown1/2 ∼ 152 K and Tup1/2 ∼ 162 K). OM investigations showed an interface spreading over all crystals during the spin transition. Thanks to the color contrast between the low-spin (LS) and the high-spin (HS) states, we have been able to follow the real time dynamics of the spin transition between these two spin states, as well as access the thermal hysteresis loop of each single crystal. After image processing, the HS–LS interface's velocity was carefully estimated in the ranges [4.4–8.5] μm s−1 and [2.5–5.5] μm s−1 on cooling and heating, respectively. In addition, we found that the velocity of the interface is shape-dependent, and accelerates nearby the crystal's borders. Interestingly, we observed that during the propagation process, the interface optimizes its shape so as to minimize the excess of elastic energy arising from the lattice parameter misfit between the LS and HS phases. All of these original experimental results are well reproduced using a spatiotemporal model based on the description of the spin-crossover problem as a reaction diffusion phenomenon.

Graphical abstract: Interplay between a crystal's shape and spatiotemporal dynamics in a spin transition material

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2018
Accepted
16 Mar 2018
First published
16 Mar 2018

Phys. Chem. Chem. Phys., 2018,20, 10142-10154

Interplay between a crystal's shape and spatiotemporal dynamics in a spin transition material

H. Fourati, E. Milin, A. Slimani, G. Chastanet, Y. Abid, S. Triki and K. Boukheddaden, Phys. Chem. Chem. Phys., 2018, 20, 10142 DOI: 10.1039/C8CP00868J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements