Jump to main content
Jump to site search

Issue 15, 2018
Previous Article Next Article

Magnetization switching through domain wall motion in Pt/Co/Cr racetracks with the assistance of the accompanying Joule heating effect

Author affiliations

Abstract

Heavy metal/ferromagnetic layers with perpendicular magnetic anisotropy (PMA) have potential applications for high-density information storage in racetrack memories and nonvolatile magnetic random access memories. In these devices, deterministic magnetization switching has been achieved via electric current induced spin orbital torques (SOTs) with the assistance of a current directional external in-plane bias field, which causes technological obstacles for the real application of SOT based spintronic devices. Here, we report that reversible field-free magnetization switching could be achieved via current-driven domain wall motion (DWM) in Pt/Co/Cr micro-sized racetracks with PMA owing to the preformation of the homochiral Néel-type domain wall, in which an in-plane inherent Dzyaloshinskii–Moriya interaction field was generated acting as the external in-plane bias field to break the symmetry. A full magnetization switching can be realized in this device based on the enhanced SOTs from a dedicated design of Pt/Co/Cr structures with Pt and Cr showing opposite signs of spin Hall angles. Therefore, the generated spin currents are expected to work in concert to improve the SOTs. We also demonstrated that the simultaneously accompanying Joule heating effect also plays a key role in the field-free magnetization switching process, including the propagation field as well as the domain wall motion velocity.

Graphical abstract: Magnetization switching through domain wall motion in Pt/Co/Cr racetracks with the assistance of the accompanying Joule heating effect

Back to tab navigation

Supplementary files

Publication details

The article was received on 13 Dec 2017, accepted on 15 Mar 2018 and first published on 15 Mar 2018


Article type: Paper
DOI: 10.1039/C7CP08352A
Citation: Phys. Chem. Chem. Phys., 2018,20, 9904-9909
  •   Request permissions

    Magnetization switching through domain wall motion in Pt/Co/Cr racetracks with the assistance of the accompanying Joule heating effect

    B. Cui, D. Li, J. Yun, Y. Zuo, X. Guo, K. Wu, X. Zhang, Y. Wang, L. Xi and D. Xue, Phys. Chem. Chem. Phys., 2018, 20, 9904
    DOI: 10.1039/C7CP08352A

Search articles by author

Spotlight

Advertisements