Jump to main content
Jump to site search

Issue 10, 2018
Previous Article Next Article

CO oxidative coupling to dimethyl oxalate over Pd–Me (Me = Cu, Al) catalysts: a combined DFT and kinetic study

Author affiliations

Abstract

CO oxidative coupling to dimethyl oxalate (DMO) on Pd(111), Pd–Cu(111) and Pd–Al(111) surfaces was systematically investigated by means of density functional theory (DFT) together with periodic slab models and micro-kinetic modeling. The binding energy results show that Cu and Al can be fine substrates to stably support Pd. The favorable pathway for DMO synthesis on these catalysts starts from the formation of two COOCH3 intermediates, followed by the coupling to each other, and the catalytic activity follows the trend of Pd–Al(111) > Pd(111) > Pd–Cu(111). Additionally, the formation of DMO is far favorable than that of dimethyl carbonate (DMC) on these catalysts. The results were further demonstrated by micro-kinetic modeling. Therefore, Pd–Al bimetallic catalysts can be applied in practice to effectively enhance the catalytic performance and greatly reduce the cost. This study can help with fine-tuning and designing of high-efficient and low-cost Pd-based bimetallic catalysts.

Graphical abstract: CO oxidative coupling to dimethyl oxalate over Pd–Me (Me = Cu, Al) catalysts: a combined DFT and kinetic study

Back to tab navigation

Publication details

The article was received on 12 Dec 2017, accepted on 07 Feb 2018 and first published on 08 Feb 2018


Article type: Paper
DOI: 10.1039/C7CP08306H
Citation: Phys. Chem. Chem. Phys., 2018,20, 7317-7332
  •   Request permissions

    CO oxidative coupling to dimethyl oxalate over Pd–Me (Me = Cu, Al) catalysts: a combined DFT and kinetic study

    B. Han, X. Feng, L. Ling, M. Fan, P. Liu, R. Zhang and B. Wang, Phys. Chem. Chem. Phys., 2018, 20, 7317
    DOI: 10.1039/C7CP08306H

Search articles by author

Spotlight

Advertisements