Jump to main content
Jump to site search

Issue 16, 2018
Previous Article Next Article

H-Abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation

Author affiliations

Abstract

Alkylated aromatics constitute a significant fraction of the components commonly found in commercial fuels. Toluene is typically considered as a reference fuel. Together with n-heptane and iso-octane, it allows for realistic emulations of the behavior of real fuels by the means of surrogate mixture formulations. Moreover, it is a key precursor for the formation of poly-aromatic hydrocarbons, which are of relevance to understanding soot growth and oxidation mechanisms. In this study the POLIMI kinetic model is first updated based on the literature and on recent kinetic modelling studies of toluene pyrolysis and oxidation. Then, important reaction pathways are investigated by means of high-level theoretical methods, thereby advancing the present knowledge on toluene oxidation. H-Abstraction reactions by OH, HO2, O and O2, and the reactivity on the multi well benzyl-oxygen (C6H5CH2 + O2) potential energy surface (PES) were investigated using electronic structure calculations, transition state theory in its conventional, variational, and variable reaction coordinate forms (VRC-TST), and master equation calculations. Exploration of the effect on POLIMI model performance of literature rate constants and of the present calculations provides valuable guidelines for implementation of the new rate parameters in existing toluene kinetic models.

Graphical abstract: H-Abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Nov 2017, accepted on 25 Jan 2018 and first published on 25 Jan 2018


Article type: Paper
DOI: 10.1039/C7CP07779C
Citation: Phys. Chem. Chem. Phys., 2018,20, 10607-10627
  •   Request permissions

    H-Abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation

    M. Pelucchi, C. Cavallotti, T. Faravelli and S. J. Klippenstein, Phys. Chem. Chem. Phys., 2018, 20, 10607
    DOI: 10.1039/C7CP07779C

Search articles by author

Spotlight

Advertisements