Jump to main content
Jump to site search

Issue 4, 2018
Previous Article Next Article

Chemical tracer diffusion of Sr and Co in polycrystalline Ca-deficient CaMnO3−δ with CaMn2O4 precipitates

Author affiliations

Abstract

Diffusivity on the A- and B-site of polycrystalline perovskite CaMnO3−δ with Ca deficiency and spinel CaMn2O4 (marokite) as a secondary phase was studied using chemical tracers and secondary ion mass spectrometry (SIMS) complemented by electron probe microanalysis (EPMA). Thin films containing Sr and Co chemical tracers were deposited on the polished surface of the polycrystalline composite sample followed by annealing at 800–1200 °C for 96 h. Diffusion profiles for each tracer were determined with SIMS, followed by calculation of diffusion coefficients by fitting to appropriate models. The Sr tracer showed mainly lattice diffusion, with an activation energy of 210 ± 30 kJ mol−1, whereas the Co tracer showed a combination of lattice and enhanced grain-boundary diffusion, with activation energies of 270 ± 30 kJ mol−1 and 380 ± 40 kJ mol−1, respectively. The diffusivities may be used to predict interdiffusion and lifetime of junctions between n-type CaMnO3−δ or CaMnO3−δ/CaMn2O4 composites and metallization interlayers or p-type leg materials in oxide thermoelectrics. In particular, the relatively high effective diffusivity of Co in polycrystalline CaMnO3−δ may play a role in the reported fast formation of the secondary phase (Ca3Co2−yMnyO6) between p-type Ca3Co3.92O9+δ and n-type CaMnO3−δ in a direct p–n thermoelectric junction.

Graphical abstract: Chemical tracer diffusion of Sr and Co in polycrystalline Ca-deficient CaMnO3−δ with CaMn2O4 precipitates

Back to tab navigation

Publication details

The article was received on 05 Nov 2017, accepted on 03 Jan 2018 and first published on 03 Jan 2018


Article type: Paper
DOI: 10.1039/C7CP07471A
Citation: Phys. Chem. Chem. Phys., 2018,20, 2754-2760
  •   Request permissions

    Chemical tracer diffusion of Sr and Co in polycrystalline Ca-deficient CaMnO3−δ with CaMn2O4 precipitates

    T. D. Desissa, N. Kanas, S. P. Singh, K. Wiik, M. Einarsrud and T. Norby, Phys. Chem. Chem. Phys., 2018, 20, 2754
    DOI: 10.1039/C7CP07471A

Search articles by author

Spotlight

Advertisements