Jump to main content
Jump to site search


The aggregation of an alkyl–C60 derivative as a function of concentration, temperature and solvent type

Author affiliations

Abstract

Contrast-variation small-angle neutron scattering (CV-SANS), small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) measurements of diffusion and isothermal titration calorimetry (ITC) are used to gain insight into the aggregation of an alkyl–C60 derivative, molecule 1, in n-hexane, n-decane and toluene as a function of concentration and temperature. Results point to an associative mechanism of aggregation similar to other commonly associating molecules, including non-ionic surfactants or asphaltenes in non-aqueous solvents. Little aggregation is detected in toluene, but small micelle-like structures form in n-alkane solvents, which have a C60-rich core and alkyl-rich shell. The greatest aggregation extent is found in n-hexane, and at 0.1 M the micelles of 1 comprise around 6 molecules at 25 °C. These micelles become smaller when the concentration is lowered, or if the solvent is changed to n-decane. The solution structure is also affected by temperature, with a slightly larger aggregation extent at 10 °C than at 25 °C. At higher concentrations, for example in solutions of 1 above 0.3 M in n-decane, a bicontinuous network becomes apparent. Overall, these findings aid our understanding of the factors driving the assembly of alkyl–π-conjugated hydrophobic amphiphiles such as 1 in solution and thereby represent a step towards the ultimate goal of exploiting this phenomenon to form materials with well-defined order.

Graphical abstract: The aggregation of an alkyl–C60 derivative as a function of concentration, temperature and solvent type

Back to tab navigation

Supplementary files

Publication details

The article was received on 15 Sep 2017, accepted on 01 Nov 2017 and first published on 20 Dec 2017


Article type: Paper
DOI: 10.1039/C7CP06348B
Citation: Phys. Chem. Chem. Phys., 2018, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    The aggregation of an alkyl–C60 derivative as a function of concentration, temperature and solvent type

    M. J. Hollamby, C. F. Smith, M. M. Britton, A. E. Danks, Z. Schnepp, I. Grillo, B. R. Pauw, A. Kishimura and T. Nakanishi, Phys. Chem. Chem. Phys., 2018, Advance Article , DOI: 10.1039/C7CP06348B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements