Jump to main content
Jump to site search


Structural dynamics upon photoexcitation-induced charge transfer in a dicopper(I)–disulfide complex

Author affiliations

Abstract

The structural dynamics of charge-transfer states of nitrogen-ligated copper complexes has been extensively investigated in recent years following the development of pump–probe X-ray techniques. In this study we extend this approach towards copper complexes with sulfur coordination and investigate the influence of charge transfer states on the structure of a dicopper(I) complex with coordination by bridging disulfide ligands and additionally tetramethylguanidine units [CuI2(NSSN)2]2+. In order to directly observe and refine the photoinduced structural changes in the solvated complex we applied picosecond pump–probe X-ray absorption spectroscopy (XAS) and wide-angle X-ray scattering (WAXS). Additionally, the ultrafast evolution of the electronic excited states was monitored by femtosecond transient absorption spectroscopy in the UV-Vis probe range. DFT calculations were used to predict molecular geometries and electronic structures of the ground and metal-to-ligand charge transfer states with singlet and triplet spin multiplicities, i.e. S0, 1MLCT and 3MLCT, respectively. Combining these techniques we elucidate the electronic and structural dynamics of the solvated complex upon photoexcitation to the MLCT states. In particular, femtosecond optical transient spectroscopy reveals three distinct timescales of 650 fs, 10 ps and >100 ps, which were assigned as internal conversion to the ground state (Sn → S0), intersystem crossing 1MLCT → 3MLCT, and subsequent relaxation of the triplet to the ground state, respectively. Experimental data collected using both X-ray techniques are in agreement with the DFT-predicted structure for the triplet state, where coordination bond lengths change and one of the S–S bridges is cleaved, causing the movement of two halves of the molecule relative to each other. Extended X-ray absorption fine structure spectroscopy resolves changes in Cu–ligand bond lengths with precision on the order of 0.01 Å, whereas WAXS is sensitive to changes in the global shape related to relative movement of parts of the molecule. The results presented herein widen the knowledge on the electronic and structural dynamics of photoexcited copper–sulfur complexes and demonstrate the potential of combining the pump–probe X-ray absorption and scattering for studies on photoinduced structural dynamics in copper-based coordination complexes.

Graphical abstract: Structural dynamics upon photoexcitation-induced charge transfer in a dicopper(i)–disulfide complex

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Jul 2017, accepted on 14 Dec 2017 and first published on 12 Feb 2018


Article type: Paper
DOI: 10.1039/C7CP04880G
Citation: Phys. Chem. Chem. Phys., 2018, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Structural dynamics upon photoexcitation-induced charge transfer in a dicopper(I)–disulfide complex

    M. Naumova, D. Khakhulin, M. Rebarz, M. Rohrmüller, B. Dicke, M. Biednov, A. Britz, S. Espinoza, B. Grimm-Lebsanft, M. Kloz, N. Kretzschmar, A. Neuba, J. Ortmeyer, R. Schoch, J. Andreasson, M. Bauer, C. Bressler, W. Gero Schmidt, G. Henkel and M. Rübhausen, Phys. Chem. Chem. Phys., 2018, Advance Article , DOI: 10.1039/C7CP04880G

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements