Issue 54, 2018

Di-copper(ii) DNA G-quadruplexes as EPR distance rulers

Abstract

Artificial metal-base tetrads composed of square-planar CuII(pyridine)4 complexes were covalently attached to both the 3′ and 5′ ends of tetramolecular DNA G-quadruplexes [Ld(G3–5)LdT]4 (L = pyridine ligand) of different lengths. Owing to the planar four-point attachment of the metal complexes, the magnetic orbitals (dx2y2) of the d9-configured CuII cations are placed in a coplanar fashion, separated by the stacked guanine tetrads. Pulsed EPR-derived CuII–CuII distances and angles were found to be in agreement with those obtained from molecular dynamics simulations. DNA-confined transition metal spin labels open new ways to study oligonucleotide structure and DNA–protein complexes.

Graphical abstract: Di-copper(ii) DNA G-quadruplexes as EPR distance rulers

Supplementary files

Article information

Article type
Communication
Submitted
21 May 2018
Accepted
11 Jun 2018
First published
11 Jun 2018

Chem. Commun., 2018,54, 7455-7458

Di-copper(II) DNA G-quadruplexes as EPR distance rulers

D. M. Engelhard, A. Meyer, A. Berndhäuser, O. Schiemann and G. H. Clever, Chem. Commun., 2018, 54, 7455 DOI: 10.1039/C8CC04053B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements