Issue 14, 2018

Spectrochemical determination of unique bacterial responses following long-term low-level exposure to antimicrobials

Abstract

Agents arising from engineering or pharmaceutical industries may have significant environmental impacts. Particularly, antimicrobials not only act as efficient eliminators of certain microbes but also facilitate the propagation of organisms with antimicrobial resistance, giving rise to critical health issues, e.g., the bloom of multidrug-resistant bacteria. Although many investigations have examined microbial responses to antimicrobials and characterized relevant mechanisms, they have focused mainly on high-level and short-term exposures, instead of simulating real-world scenarios in which the antimicrobial exposure is at a low-level for long periods. Herein, we developed a spectrochemical tool, attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, as a high-throughput and nondestructive approach to interrogate the long-term effects of low-level antimicrobial exposure in bacterial cells. Post-exposure to nanoparticulate silver (AgNP), tetracycline or their mixtures for 12 days, Gram-positive (Mycobacterium vanbaalenii PYR-1) and Gram-negative (Pseudomonas fluorescens) bacteria exhibited distinct IR spectral alterations. Multivariate analysis coupled with multivariate regression trees (MRT) indicates nutrient depletion and exposure time as the primary factors in bacterial behaviour, followed by exposure category and bacterial type. Nutrient depletion and starvation during long-term exposure drives bacterial cells into a dormant state or to exhibit additional cellular components (e.g., fatty acids) in response to antimicrobials, consequently causing a broader range of spectral alterations compared to short-term exposure. This work is the first report highlighting the more important roles of exposure duration and nutrient depletion, instead of treatment regimens of antimicrobials, in microbial responses to low-level and prolonged environmental exposures.

Graphical abstract: Spectrochemical determination of unique bacterial responses following long-term low-level exposure to antimicrobials

Article information

Article type
Paper
Submitted
03 Jan 2018
Accepted
23 Feb 2018
First published
26 Feb 2018

Anal. Methods, 2018,10, 1602-1611

Spectrochemical determination of unique bacterial responses following long-term low-level exposure to antimicrobials

N. Jin, K. T. Semple, L. Jiang, C. Luo, Francis L. Martin and D. Zhang, Anal. Methods, 2018, 10, 1602 DOI: 10.1039/C8AY00011E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements