Jump to main content
Jump to site search


Monolithic capillary columns consisting of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) and their diol derivatives with incorporated hydroxyl functionalized multiwalled carbon nanotubes for reversed-phase capillary electrochromatography

Author affiliations

Abstract

Two types of monolithic stationary phases with incorporated hydroxyl functionalized multiwalled carbon nanotubes (OH-MWCNTs) were introduced and evaluated, namely, the poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) monolith, denoted as poly(GMA-co-EDMA), and a diol derivative of the poly(GMA-co-EDMA) monolith. The diol derivative monolith was obtained by subjecting the poly(GMA-co-EDMA) monolith with physically incorporated OH-MWCNTs to an acid treatment with 0.1 M sulfuric acid at a moderate temperature of 50 °C for a total of 7.5 h. Also, the poly(GMA-co-EDMA) monolith with both physically and covalently incorporated OH-MWCNTs was prepared by subjecting the physically incorporated monolithic column to a Lewis acid catalyzed reaction in the presence of BF3 in order to react some of the OH-MWCNTs with the epoxy rings of the poly(GMA-co-EDMA) monolith. In all cases, the OH-MWCNTs were subjected to high power sonication at an output power of 10 W for 15 min with the aim of better dispersing the incorporated nanotubes into the monoliths under investigation. In fact, high power sonication yielded columns with a relatively higher plate count (∼2 fold increase) when compared to low power sonication. While the incorporation of OH-MWCNTs into the poly(GMA-co-EDMA) monolith acted as an amendment boosting the nonpolar character of the monolith and providing additional π–π interactions, the diol derivative monolith with its polar backbone character acted nearly as a support for the OH-MWCNT stationary phase giving rise to a carbon nanotube sorbent providing hydrophobic and π–π interactions via the incorporated OH-MWCNTs. These two kinds of columns were evaluated using alkylbenzenes, toluene derivatives, aniline compounds, phenols and polyaromatic hydrocarbons.

Graphical abstract: Monolithic capillary columns consisting of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) and their diol derivatives with incorporated hydroxyl functionalized multiwalled carbon nanotubes for reversed-phase capillary electrochromatography

Back to tab navigation

Publication details

The article was received on 28 Aug 2017, accepted on 13 Nov 2017 and first published on 13 Nov 2017


Article type: Paper
DOI: 10.1039/C7AN01426K
Citation: Analyst, 2018, Advance Article
  •   Request permissions

    Monolithic capillary columns consisting of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) and their diol derivatives with incorporated hydroxyl functionalized multiwalled carbon nanotubes for reversed-phase capillary electrochromatography

    N. Ganewatta and Z. El Rassi, Analyst, 2018, Advance Article , DOI: 10.1039/C7AN01426K

Search articles by author

Spotlight

Advertisements