Jump to main content
Jump to site search


Non-volatile ferroelectric control of room-temperature electrical transport in perovskite oxide semiconductor La:BaSnO3

Author affiliations

Abstract

Complex oxide heterostructures composed of oxide semiconductor thin films and ferroelectric single crystals have attracted substantial interest due to the electrically switchable channel resistance by the polarization reversal of ferroelectrics. Here we achieve reversible and non-volatile modulation of room-temperature (RT) resistance in epitaxial La-doped BaSnO3 (LBSO) transparent oxide layers by exploiting the ferroelectric field effect of (001)-oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) single-crystal substrates. Using “all-perovskite” heterostructures, the sheet resistance of the LBSO thin films could be reversibly modified upon polarization switching; as a result, the non-volatile sheet resistance was modulated by up to ∼70% at RT. Such heterostructures that combine materials with dissimilar functionality provide scientific insights into the charge-mediated physics of perovskite stannate systems coupled to ferroelectric polarization, and show technological potential for non-volatile electronic devices based on new transparent oxide semiconductors.

Graphical abstract: Non-volatile ferroelectric control of room-temperature electrical transport in perovskite oxide semiconductor La:BaSnO3

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 Aug 2017, accepted on 26 Oct 2017 and first published on 27 Oct 2017


Article type: Paper
DOI: 10.1039/C7TC03730A
Citation: J. Mater. Chem. C, 2017, Advance Article
  •   Request permissions

    Non-volatile ferroelectric control of room-temperature electrical transport in perovskite oxide semiconductor La:BaSnO3

    S. Heo, D. Yoon, S. Yu, J. Son and H. M. Jang, J. Mater. Chem. C, 2017, Advance Article , DOI: 10.1039/C7TC03730A

Search articles by author

Spotlight

Advertisements