Jump to main content
Jump to site search

Issue 38, 2017
Previous Article Next Article

Solution-processed diarylfluorene derivatives for violet-blue amplified spontaneous emission and electroluminescence

Author affiliations

Abstract

A series of solution-processable diarylfluorene-based materials with pendent 4-(hexyloxy carbazole)-9,9-diphenyl-9H-fluorene (MC6Cz) or 4-(octyloxy)-9,9-diphenyl-9H-fluorene (MC8) as the core and endcapped with different charge transport moieties such as phenylcarbazole (NPC) or triphenylemine (TPA) have been synthesized and investigated systemically. These materials exhibited bright fluorescence emission from violet-blue to deep blue without molecular aggregation in diluted solutions and films. Furthermore, these materials also displayed prominent virtues including superior solution-processability and amorphous characteristics. Consequently, the EL spectra of the solution-processed organic light-emitting diodes (OLEDs) are expected to be similar to the corresponding PL spectra, suggesting intramolecular photophysical behavior. MC6Cz-9-NPC as an emitting layer presented the highest maximum luminance of about 1560 cd m−2 with a lower turn on voltage of 3.5 V. In contrast, the ASE results revealed that the MC8 core-containing compounds exhibited relatively lower thresholds comparable with traditional conjugated or star type polymers, which could be promising optical gain media. We proposed a novel molecular design strategy to construct high-performance solution-processed violet-blue fluorophores.

Graphical abstract: Solution-processed diarylfluorene derivatives for violet-blue amplified spontaneous emission and electroluminescence

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Aug 2017, accepted on 05 Sep 2017 and first published on 05 Sep 2017


Article type: Paper
DOI: 10.1039/C7TC03536E
Citation: J. Mater. Chem. C, 2017,5, 9903-9910
  •   Request permissions

    Solution-processed diarylfluorene derivatives for violet-blue amplified spontaneous emission and electroluminescence

    Y. Han, L. Bai, C. Yin, C. Ou, X. Zhang, Z. Zuo, B. Liu, M. Yu, J. Lin, J. Zhao, W. Zhu, Y. Liu, J. Li, J. Wang, L. Xie and W. Huang, J. Mater. Chem. C, 2017, 5, 9903
    DOI: 10.1039/C7TC03536E

Search articles by author

Spotlight

Advertisements