Jump to main content
Jump to site search

Issue 25, 2017
Previous Article Next Article

The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters

Author affiliations

Abstract

Dual luminescence, i.e. intense, simultaneous, room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) is observed in a series of donor–acceptor–donor (D–A–D) molecules. This dual luminescence is stronger in the “angular” isomers, compared to their “linear” regioisomers, which is consistent with an enhanced intersystem crossing (ISC) in the former. Herein, we demonstrate that the small energy gap between the triplet levels, T1–Tn, below the lowest singlet state, S1, in the “angular” regioisomers, enhances the coupling between S1 and T1 states and favors ISC and reverse ISC (rISC). This is consistent with a spin–vibronic mechanism. In the absence of this “triplet ladder”, due to the larger energy difference between T1 and Tn in the “linear” regioisomers, the ISC and rISC are not efficient. Remarkably, the enhancement of the ISC rate in the “angular” regioisomers is accompanied by an increase of the rate of internal conversion (IC). These results highlight the contributions of higher triplet excited states and molecular vibronic coupling to the harvest of triplet states in organic compounds, and cast the TADF and RTP mechanisms into a common conceptual framework.

Graphical abstract: The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 May 2017, accepted on 23 May 2017 and first published on 23 May 2017


Article type: Paper
DOI: 10.1039/C7TC01958K
Citation: J. Mater. Chem. C, 2017,5, 6269-6280
  • Open access: Creative Commons BY license
  •   Request permissions

    The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters

    R. Huang, J. Avó, T. Northey, E. Chaning-Pearce, P. L. dos Santos, J. S. Ward, P. Data, M. K. Etherington, M. A. Fox, T. J. Penfold, M. N. Berberan-Santos, J. C. Lima, M. R. Bryce and F. B. Dias, J. Mater. Chem. C, 2017, 5, 6269
    DOI: 10.1039/C7TC01958K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements