Issue 29, 2017

Quantifying local thickness and composition in thin films of organic photovoltaic blends by Raman scattering

Abstract

We report a methodology based on Raman spectroscopy that enables the non-invasive and fast quantitative determination of local thickness and composition in thin films (from a few monolayers to hundreds of nm) of one or more components. We apply our methodology to blends of organic conjugated materials relevant in the field of organic photovoltaics. As a first step, we exploit the transfer-matrix formalism to describe the Raman process in thin films including reabsorption and interference effects of the incoming and scattered electric fields. This allows determining the effective solid-state Raman cross-section of each material by studying the dependence of the Raman intensity on film thickness. These effective cross sections are then used to estimate the local thickness and composition in a series of polymer:fullerene blends. We find that the model is accurate within ±10 nm in thickness and ±5 vol% in composition provided that (i) the film thickness is kept below the thickness corresponding to the first maximum of the calculated Raman intensity oscillation; (ii) the materials making up the blend show close enough effective Raman cross-sections; and (iii) the degree of order attained by the conjugated polymer in the blend is similar to that achieved when cast alone. Our methodology opens the possibility of making quantitative maps of composition and thickness over large areas (from microns to centimetres squared) with diffraction-limited resolution and in any multi-component system based thin film technology.

Graphical abstract: Quantifying local thickness and composition in thin films of organic photovoltaic blends by Raman scattering

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2017
Accepted
21 Jun 2017
First published
06 Jul 2017
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2017,5, 7270-7282

Quantifying local thickness and composition in thin films of organic photovoltaic blends by Raman scattering

X. Rodríguez-Martínez, M. S. Vezie, X. Shi, I. McCulloch, J. Nelson, A. R. Goñi and M. Campoy-Quiles, J. Mater. Chem. C, 2017, 5, 7270 DOI: 10.1039/C7TC01472D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements