Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.



Edge Dominated Electronic Properties of MoS2/Graphene Hybrid 2D Materials: Edge State, Electron Coupling and Work Function

Abstract

The binding pattern, electronic properties and work function of MoS2 nanostructures stacking on graphene substrate have been studied through density functional theory calculations. Three MoS2 dimensionalities have been considered: edge-free monolayer, one-dimensional nanoribbon and zero-dimensional quantum dot (QD). Our results clearly reveal the importance of MoS2 edges in regulating the binding strength and interfacial electron coupling. Remarkably, MoS2 monolayer stacking on graphene is through van der Waals (vdW) attraction with negligible electron coupling, thus the Dirac-cone electronic band dispersion of graphene is totally conserved. For MoS2 ribbon and QD, they can form stronger binding (beyond the vdW attraction) with graphene and are robust to attract graphene’s electrons, resulting in open-up of a bandgap of graphene. The excess electrons uniformly accumulate at the S-edges of MoS2 structures in forming edge states, which are believed to be responsible for the enhanced catalytic activities observed in experiments. It is also found that the edge-free MoS2 stacking on graphene can lower the work function of the complex to be smaller than both of the two counterparts. Our study highlights the importance of MoS2 dimensionalities in the heterostructure which is important to guide the design of nanostructures with fruitful electronic and chemical properties.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 22 Feb 2017, accepted on 04 Apr 2017 and first published on 04 Apr 2017


Article type: Paper
DOI: 10.1039/C7TC00816C
Citation: J. Mater. Chem. C, 2017, Accepted Manuscript
  •   Request permissions

    Edge Dominated Electronic Properties of MoS2/Graphene Hybrid 2D Materials: Edge State, Electron Coupling and Work Function

    M. Guo, Y. Yang, Y. Leng, L. Wang, H. Dong, H. Liu and W. Li, J. Mater. Chem. C, 2017, Accepted Manuscript , DOI: 10.1039/C7TC00816C

Search articles by author