Jump to main content
Jump to site search


Triplet harvesting in luminescent Cu(I) complexes by the thermally activated luminescence transition mechanism: impact of the molecular structure

Author affiliations

Abstract

Thermally induced transition from ordinary phosphorescence to delayed fluorescence in two kinds of luminescent copper(I) complexes is comprehensively investigated by using variable-temperature time-integrated and time-resolved photoluminescence measurements as well as model analysis. A pronounced impact of the molecular structure on exciton transfer from the lowest excited triplet spin states to the singlet spin states with higher energy is firmly demonstrated. Moreover, several fundamental photophysical processes including triplet localization, triplet harvesting, and reverse intersystem crossing are explored using theoretical models. Temperature dependence abnormalities of the emission intensity are quantitatively interpreted. Raman spectral characterization and theoretical calculations of vibronic emission transitions reveal that the molecules' thermal vibrations play an essential role in the fluorescence process.

Graphical abstract: Triplet harvesting in luminescent Cu(i) complexes by the thermally activated luminescence transition mechanism: impact of the molecular structure

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 20 Feb 2017, accepted on 02 Apr 2017 and first published on 03 Apr 2017


Article type: Paper
DOI: 10.1039/C7TC00773F
Citation: J. Mater. Chem. C, 2017, Advance Article
  •   Request permissions

    Triplet harvesting in luminescent Cu(I) complexes by the thermally activated luminescence transition mechanism: impact of the molecular structure

    Z. C. Su, C. C. Zheng, G. Cheng, C.-M. Che and S. J. Xu, J. Mater. Chem. C, 2017, Advance Article , DOI: 10.1039/C7TC00773F

Search articles by author