Jump to main content
Jump to site search

Issue 17, 2017
Previous Article Next Article

Enhancement in the thermoelectric performance of colusites Cu26A2E6S32 (A = Nb, Ta; E = Sn, Ge) using E-site non-stoichiometry

Author affiliations

Abstract

Colusite-based materials have attracted significant interest in the field of thermoelectrics because of their earth-abundant elements (Cu, S) and high thermoelectric performance. In this study, we demonstrate the enhancement of the thermoelectric figure of merit ZT in colusites Cu26A2E6−xS32 (A = Nb, Ta; E = Sn, Ge; x = 0, 0.5) by modifying their chemical composition. Colusite samples were prepared by melting a mixture of their constituent elements in evacuated quartz tubes followed by hot pressing. The electrical resistivity decreased with Sn and Ge contents, leading to an improvement in the power factor. Energy-dispersive X-ray spectroscopy analysis revealed cation-rich compositions in all the colusite samples. The extra cations were most likely formed during the sintering processes, and they effectively scattered heat-carrying phonons, yielding a low total thermal conductivity (<0.80 W K−1 m−1). For Cu26Ta2Sn6−xS32, scanning electron microscopy analysis revealed the insertion of CuS- and Cu2S-based microscale precipitates, which further reduced the lattice thermal conductivity. At 670 K, a ZT of ∼1.0 was achieved in Cu26Ta2Sn5.5S32, arising from a power factor of ∼800 μW K−2 m−1. Moreover, the low total thermal conductivity (∼0.47 W K−1 m−1 at 670 K) in Cu26Nb2Ge6.0S32 leaded to a high ZT of ∼1.0 at 670 K.

Graphical abstract: Enhancement in the thermoelectric performance of colusites Cu26A2E6S32 (A = Nb, Ta; E = Sn, Ge) using E-site non-stoichiometry

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Feb 2017, accepted on 23 Mar 2017 and first published on 27 Mar 2017


Article type: Paper
DOI: 10.1039/C7TC00762K
Citation: J. Mater. Chem. C, 2017,5, 4174-4184
  •   Request permissions

    Enhancement in the thermoelectric performance of colusites Cu26A2E6S32 (A = Nb, Ta; E = Sn, Ge) using E-site non-stoichiometry

    Y. Bouyrie, M. Ohta, K. Suekuni, Y. Kikuchi, P. Jood, A. Yamamoto and T. Takabatake, J. Mater. Chem. C, 2017, 5, 4174
    DOI: 10.1039/C7TC00762K

Search articles by author

Spotlight

Advertisements