Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.



Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers

Author affiliations

Abstract

Extending the π-conjugation length of the polymeric backbone is an effective way to enhance the photovoltaic performance of polymer solar cells (PSCs). Here, the donor–donor–acceptor (D–D–A) molecular strategy has been used to design and synthesize two wide-bandgap conjugated copolymers, in which 2,2-bithiophene (BT) or thieno[3,2-b] thiophene (TT) is introduced to the D–A polymer as a third component to investigate the influence of the conjugation backbone on photovoltaic properties. The structure–property relationship and photovoltaic performance of the polymer have been investigated. Compared to P2 (TT as the third unit), P1 (BT as the third unit) exhibits a deeper highest occupied molecular orbital (HOMO) level and a more planar backbone structure with slightly higher mobility. Based on a conventional device structure with PC70BM as the acceptor material, P1-based solar cells exhibit a maximum power conversion efficiency (PCE) of 6.93%, an open-circuit voltage (VOC) of 0.86 V, a short-circuit current (JSC) of 11.06 mA cm−2, and a fill factor (FF) of 72.9%, which are much better than those of P2-based solar cells (PCE 3.92%). These results demonstrate that extending the effective π-conjugation structure of the polymer backbone could improve the photovoltaic performance of PSCs by inserting an additional appropriate donor unit in the D–A polymer.

Graphical abstract: Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 16 Feb 2017, accepted on 03 Apr 2017 and first published on 04 Apr 2017


Article type: Paper
DOI: 10.1039/C7TC00720E
Citation: J. Mater. Chem. C, 2017, Advance Article
  •   Request permissions

    Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers

    X. Pan, W. Xiong, T. Liu, X. Sun, L. Huo, D. Wei, M. Yu, M. Han and Y. Sun, J. Mater. Chem. C, 2017, Advance Article , DOI: 10.1039/C7TC00720E

Search articles by author