Jump to main content
Jump to site search


Ladder-Type Oligo(p-phenylene)s with D-π-A Architectures: Design, Synthesis, Optical Gain Properties, and Stabilized Amplified Spontaneous Emission

Abstract

A novel family of rigid ladder-type oligo(p-phenylene)s with donor-π-acceptor (D-π-A) architectures (n)L-F/(n)L-Ph-F (n = 2-4) end-capped with diphenylamino and fluorophenyl/fluorine have been designed, synthesized and explored as gain media for organic lasers. The resulting materials demonstrated excellent thermal stability with a high degradation temperature (Td) over 400 °C. The extension of π-conjugated bridge length between the donor and acceptor units successfully depressed the crystallization tendency of oligo(p-phenylene)s, resulting in enhanced glassy temperature (Tg) and improved morphological stability in neat films. Amplified spontaneous emission (ASE) threshold (Eth) decreases with an extension in the conjugation length of the oligo(p-phenylene)s. Especially for 4L-Ph-F with the longest conjugation length, the ASE threshold is determined as low as 1.97 μJ cm−2 with high net gain coefficient over 90 cm−1 and a rather low loss coefficient of α = 2.0 cm-1. One dimensional distributed feedback (1D DFB) lasers demonstrated lasing threshold of 5.3 nJ pulse-1 (0.44 kW cm-2, 2.2 μJ cm-2) and 1.3 nJ pulse-1 (0.1 kW cm-2, 0.5 μJ cm-2) for 4L-F (at 460 nm) and 4L-Ph-F lasers (at 471 nm), respectively. It is noted that the Eth of all the ladder-type samples (n)L-Ph-F(n=2-4) remains almost the same with increasing the annealing temperature even up to 220℃. The high gain and low loss with excellent thermal and optical stability have rendered these rigid D-π-A ladder-type materials advantageous as robust gain media for organic lasers.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 12 Jan 2017, accepted on 13 Apr 2017 and first published on 13 Apr 2017


Article type: Paper
DOI: 10.1039/C7TC00185A
Citation: J. Mater. Chem. C, 2017, Accepted Manuscript
  •   Request permissions

    Ladder-Type Oligo(p-phenylene)s with D-π-A Architectures: Design, Synthesis, Optical Gain Properties, and Stabilized Amplified Spontaneous Emission

    M. Fang, J. Huang, S. Chang, Y. Jiang, W. Lai and W. Huang, J. Mater. Chem. C, 2017, Accepted Manuscript , DOI: 10.1039/C7TC00185A

Search articles by author