Jump to main content
Jump to site search

Issue 12, 2017
Previous Article Next Article

Energy efficient, one-step microwave-solvothermal synthesis of a highly electro-catalytic thiospinel NiCo2S4/graphene nanohybrid as a novel sustainable counter electrode material for Pt-free dye-sensitized solar cells

Author affiliations

Abstract

A sustainable rapid microwave-solvothermal (MW-ST) synthesis approach has been successfully demonstrated to develop thiospinel NiCo2S4 nanocrystals and their nanohybrids with graphene nanosheets (GNS) using transition metal-ions (Co2+, Ni2+) and thiourea as a sulfur precursor in the presence of graphite oxide (GO). The MW-ST method enables the nucleation and growth of cubic linnaeite-type thiospinel NiCo2S4 nanocrystals and simultaneous in situ ultra-fast polyol-reduction of GO to GNS and its hybridization within 15 min at 200 °C using ethylene glycol (EG) as the solvent. This process absolutely evades the use of toxic reducing agents or post solid-state sintering at elevated temperatures and subsequent sulphurization using toxic H2S/Na2S gases. The nanocrystallite aggregates (NCS-1)/GNS nanohybrid exhibited a remarkable electro-catalytic activity towards triiodide (I/I3) reduction owing to improved electronic conductivity and synergistic effects at NCS-1 and GNS interfaces. The developed NCS-1/GNS nanohybrid as a novel counter electrode (CE) for Pt-free dye sensitized solar cells (DSSCs) demonstrated a high power conversion efficiency (PCE) of 7.98% in comparison to the conventional Pt CE of 8.01% under the same conditions. Hence, this work presents a scalable synthesis of an earth-abundant, thiospinel NiCo2S4/GNS nanohybrid CE via a facile single-step MW-ST process as a potential alternative to expensive Pt as a CE in DSSCs and other electrochemical clean energy systems.

Graphical abstract: Energy efficient, one-step microwave-solvothermal synthesis of a highly electro-catalytic thiospinel NiCo2S4/graphene nanohybrid as a novel sustainable counter electrode material for Pt-free dye-sensitized solar cells

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 25 Oct 2016, accepted on 24 Feb 2017 and first published on 27 Feb 2017


Article type: Paper
DOI: 10.1039/C6TC04619C
Citation: J. Mater. Chem. C, 2017,5, 3146-3155
  •   Request permissions

    Energy efficient, one-step microwave-solvothermal synthesis of a highly electro-catalytic thiospinel NiCo2S4/graphene nanohybrid as a novel sustainable counter electrode material for Pt-free dye-sensitized solar cells

    R. Krishnapriya, S. Praneetha, A. M. Rabel and A. Vadivel Murugan, J. Mater. Chem. C, 2017, 5, 3146
    DOI: 10.1039/C6TC04619C

Search articles by author