Jump to main content
Jump to site search


Implementation of a stratified approach and gene immobilization to enhance the osseointegration of a silk-based ligament graft

Author affiliations

Abstract

A silk scaffold exhibits high potential for the human anterior cruciate ligament (ACL) reconstruction due to its exceptional mechanics as well as biocompatibility. Inefficient ACL interface restoration is thought to be a major hurdle for the common implementation of a silk-based ligament graft. By integrating a stratified approach and gene immobilization, here we developed a gene-immobilized triphasic silk scaffold to enhance ACL osseointegration. Isotropic silk was divided into three regions (respectively corresponding to a ligament, fibrocartilage and the bone region of the native ACL interface) using a custom-made divider, and the lentiviral vector-encoded transforming growth factor beta-3 (TGF-β3) and bone morphogenetic protein-2 (BMP2) was further, respectively, immobilized to phosphatidylserine (PS)-coated fibrocartilage and the bone region of the triphasic silk scaffold. The in vitro assessments displayed that this gene-immobilized triphasic silk scaffold significantly promotes bone marrow mesenchymal stem cell (BMSC) proliferation and differentiation into corresponding cell lineage. Moreover, the gene-modified triphasic silk scaffold combined with BMSCs alone, which was rolled into a compact shaft to be implanted onto rabbit ACL-defect models, revealed roughly complete osseointegration restoration as a result of apparent three-layered tissue formation and robust mechanical ability as early as 12 weeks postoperatively. These outcomes demonstrated that employing the stratified approach and gene immobilization efficiently expedites silk-mediated ACL interface formation, expanding the therapeutic potential of the silk-based ligament graft for ACL reconstruction.

Graphical abstract: Implementation of a stratified approach and gene immobilization to enhance the osseointegration of a silk-based ligament graft

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Jun 2017, accepted on 23 Jul 2017 and first published on 24 Jul 2017


Article type: Paper
DOI: 10.1039/C7TB01579H
Citation: J. Mater. Chem. B, 2017, Advance Article
  •   Request permissions

    Implementation of a stratified approach and gene immobilization to enhance the osseointegration of a silk-based ligament graft

    J. Fan, L. Sun, X. Chen, L. Qu, H. Li, X. Liu, Y. Zhang, P. Cheng and H. Fan, J. Mater. Chem. B, 2017, Advance Article , DOI: 10.1039/C7TB01579H

Search articles by author

Spotlight

Advertisements