Jump to main content
Jump to site search


Microporous density-mediated the response of MSCs on 3D trimodal macro/micro/nano-porous scaffolds via fibronectin /integrin and FAK/MAPK signaling pathways

Abstract

Microporous architecture of biomaterials/scaffolds exerts a critical role in cellular behaviors of marrow stromal cells in the field of tissue regeneration, but the role of microporous density in this process and its underlying molecular mechanism are poorly understood. In the present work, a series of three-dimensional (3D) trimodal macro/micro/nano-porous MBG scaffolds (TMSs) with different microporous densities were developed to investigate the influence of microporous density on attachment, proliferation and osteogenic differentiation of rat bone marrow stromal cells (rBMSCs), and the fundamental molecular mechanism was explored. The results demonstrated that scaffolds with micropores significantly promoted initial cell adhesion, ALP activity and osteogenesis-related genes/protein expressions, especially for the one with 20% microporous density (TMS 20). We found that the appropriate microporous density modulated the adsorption of fibronectin (Fn), and in turn facilitated integrin receptors binding affinity, focal adhesion complexes formation and subsequent FAK/MAPK signaling pathway activation. Based on these studies, it can be confirmed that microporous density contributes to the regulation of cellular response, which can provide a new insight on the design of future bone substitutes in 3D environment.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 04 Jan 2017, accepted on 11 Apr 2017 and first published on 12 Apr 2017


Article type: Paper
DOI: 10.1039/C7TB00041C
Citation: J. Mater. Chem. B, 2017, Accepted Manuscript
  •   Request permissions

    Microporous density-mediated the response of MSCs on 3D trimodal macro/micro/nano-porous scaffolds via fibronectin /integrin and FAK/MAPK signaling pathways

    B. Duan, H. Niu, W. Zhang, Y. Ma, Y. Yuan and C. Liu, J. Mater. Chem. B, 2017, Accepted Manuscript , DOI: 10.1039/C7TB00041C

Search articles by author