Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.



One-Step hydrothermal treatment to fabricate Bi2WO6–reduced graphene oxide nanocomposites for enhanced visible light photoelectrochemical performance

Abstract

Considering ultraviolet light may cause the denaturation of biomaterials, searching and engineering for innovative and advanced nanomaterials with excellent photoelectrochemical properties under visible light illumination is of great significance in the fundamental understanding and application of photoelectrochemical (PEC) sensors. As a widely applied visible light response material, the applications of Bi2WO6 in PEC fields were restricted because of the rapid recombination of photoinduced electron-hole pairs. In this work, Bi2WO6 functionalized reduced oxide (Bi2WO6-rGO) nanocomposites (NCs) were prepared by a one-step solvothermal method. After optimizing the content of rGO, the Bi2WO6-rGO2.94% NCs displayed enhanced photocurrent intensity (the starting mass ratios of GO to Bi2WO6=0.0294), which was nearly 2.7-fold than pure Bi2WO6 nanoparticles (NPs) because of the separation of the photoinduced carriers and the enhancement of visible light absorption. Based on the coupling of Pb2+-induced allosteric transition of G-quadruplex DNAzyme and the enzymatic biocatalytic precipitation (BCP), Bi2WO6-rGO2.94% NCs was applied in the construction of a novel PEC sensor for the determination of Pb2+. The as-fabricated PEC sensor exhibited good anti-interference ability and a good linear relationship was obtained between the photocurrent intensity and the logarithm of the Pb2+ concentration over a concentration range from 0.01 to 50 μM and with a detection limit of 3.3 nM (S/N=3), indicating that Bi2WO6-rGO nanocomposites would be a promising material for PEC sensing.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 24 Sep 2016, accepted on 14 Apr 2017 and first published on 14 Apr 2017


Article type: Paper
DOI: 10.1039/C6TB02493A
Citation: J. Mater. Chem. B, 2017, Accepted Manuscript
  •   Request permissions

    One-Step hydrothermal treatment to fabricate Bi2WO6–reduced graphene oxide nanocomposites for enhanced visible light photoelectrochemical performance

    S. Chen, N. Hao, X. Zhang, Y. Yan, Z. Zhou, Y. Zhang and K. Wang, J. Mater. Chem. B, 2017, Accepted Manuscript , DOI: 10.1039/C6TB02493A

Search articles by author