Issue 5, 2018

Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study

Abstract

Lacking effective anchoring materials to suppress the severe shuttle effect is a longstanding issue hindering the development of lithium–sulfur (Li–S) batteries. In this work, a first-principles study is carried out to investigate the potential of borophene and defective borophene, which have high ionic conductivity and adsorbent ability, as anchoring materials for Li–S batteries. Borophene is found to exhibit ultra-high adsorption energies towards lithium polysulfides, but the material facilitates the decomposition of Li–S clusters, leading to an undesirable sulfur loss during battery cycling. For this reason, borophene is not an ideal anchoring material for Li–S batteries. On the contrary, defective borophene is found to show moderate adsorption energies ranging from 1 to 3 eV, which not only effectively anchors lithium polysulfides to suppress the shuttle effect, but also keeps their cyclic structures undecomposed. In addition, defective borophene exhibits a metallic characteristic during the whole reaction process, ensuring the lithium polysulfides be easily charged back and not accumulate on the anchoring materials. Given these advantages, it is expected that defective borophene is a promising anchoring material, leading to a suppressed shuttle effect and enhanced capacity retention for Li–S batteries.

Graphical abstract: Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2017
Accepted
25 Dec 2017
First published
27 Dec 2017

J. Mater. Chem. A, 2018,6, 2107-2114

Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study

H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren and T. S. Zhao, J. Mater. Chem. A, 2018, 6, 2107 DOI: 10.1039/C7TA09244J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements