Jump to main content
Jump to site search

Issue 41, 2017
Previous Article Next Article

Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: approaching the limit?

Author affiliations

Abstract

Na0.5Bi0.5TiO3 (NBT) perovskite is often considered as a potential lead-free piezoelectric material but it can also be an excellent oxide-ion conductor (M. Li et al., Nature Materials, 13, 2014, 31–35). Here we report the non-stoichiometry and oxide-ion conductivity of undoped and acceptor-doped NBT. A range of acceptor-type ions with varying doping levels are selected to incorporate into NBT or Bi-deficient NBT (nominal Na0.5Bi0.49TiO2.985; NB0.49T). Low levels of acceptors (typically < 2 at%) can be doped on both cation sites of NBT by an ionic compensation mechanism to create oxygen vacancies and are therefore effective in enhancing the bulk oxide-ion conductivity to values of ∼2 mS cm−1 at 400 °C. A maximum enhancement of less than 1 order of magnitude is achieved using either A-site Sr (or Ca) or B-site Mg doping in NB0.49T. This conductivity maximum is in good agreement with an oxygen-vacancy diffusivity limit model in a perovskite lattice proposed by R. A. De Souza (Advanced Functional Materials, 25, 2015, 6326–6342) and suggests that optimisation of the ionic conductivity in NBT has been achieved. Our findings on NBT illustrate that this approach should be applicable to other acceptor-doped perovskite oxides to determine their electrolyte (oxide-ion) conductivity limit.

Graphical abstract: Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: approaching the limit?

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Aug 2017, accepted on 08 Oct 2017 and first published on 09 Oct 2017


Article type: Communication
DOI: 10.1039/C7TA07667C
Citation: J. Mater. Chem. A, 2017,5, 21658-21662
  • Open access: Creative Commons BY license
  •   Request permissions

    Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: approaching the limit?

    F. Yang, M. Li, L. Li, P. Wu, E. Pradal-Velázque and D. C. Sinclair, J. Mater. Chem. A, 2017, 5, 21658
    DOI: 10.1039/C7TA07667C

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements